Extracted from:

Mastering Ruby Closures

A Guide to Blocks, Procs, and Lambdas

This PDF file contains pages extracted from Mastering Ruby Closures, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
ogrammers

Mastering Ruby
Closures

A Guide to Blocks, Procs,
and Lambdas

Benjamin
Tan Wei Hao

edited by Brian P. Hogan

Mastering Ruby Closures

A Guide to Blocks, Procs, and Lambdas

Benjamin Tan Wei Hao

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian P. Hogan

Copy Editor: Nicole Abramowitz

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-261-9

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Blocks as Closures and Block Local Variables

In Ruby, blocks act like anonymous functions. After all, blocks carry a bunch
of code, to be called only when yielded. A block also carries around the context
in which it was defined:

def chalkboard gag(line, repetition)
repetition.times { |x| puts "#{x}: #{line}" }
end

chalkboard gag("I will not surprise the incontinent", 3)

This returns:

0: I will not surprise the incontinent
1: I will not surprise the incontinent
2: I will not surprise the incontinent

What'’s the free variable here? It is line. That’s because line is not a block local
variable. Instead, it needs access to the outer scope until it reaches the
arguments of chalkboard_gag.

The behavior of the preceding code shouldn’t be too surprising, because it
seems rather intuitive. Imagine now if Ruby didn’t have closures. The block
then wouldn’t be able to access the arguments. You can simulate this by
declaring line to be a block local variable by preceding it with a semicolon:
def chalkboard gag(line, repetition)

repetition.times { |x; line| puts "#{x}: #{line}" }
end

Block local variables are declared after the semicolon. Now line in the block
no longer refers to the arguments of chalkboard_gag:

1:
2:

Block local variables are a way to ensure that the variables within a block
don’t override another outer variable of the same name. This essentially cir-
cumvents the variable capturing behavior of a closure.

Here’s another example:

x = "outside x"
1l.times { x = "modified from the outside block" }

puts x # => "modified from the outside block"

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

°8

In this example, the outer x is modified by the block, because the block closes
over the outer x, and therefore has a reference to it. If we want to prevent this
behavior, we could do this:

X = "outside x"
l.times { |;x| x = "modified from the outside block" }

puts x # => "outside x"

That covers most of what there is to know about block variables. In the next
section, we take a look at different block patterns that are often seen in Ruby
code. These patterns cover enumeration, resource management, and object
initialization.

Next, let’s look at some patterns that use blocks, starting with enumeration.

Block Pattern #1: Enumeration

You may have fallen in love with Ruby because of the way it does enumeration:

>> %w(look ma no for loops).each do |x|
>> puts x

>> end

look

ma

no

for

loops

=> ["look", "ma", "

no", "for", "loops"]

Besides being very expressive, enumeration using blocks is more concise and
less error-prone. It is concise because the block captures exactly what we
want to do with each element (printing it out to the console). It is less error-
prone compared to traditional for loops because it does away with indices that
are prone to the infamous off-by-one error.

You should be familiar with this way of iterating over a collection, such as
an Array. What's interesting is how these methods are implemented under the
hood.

Going through the process of building your own implementation will give you
a much deeper understanding of how methods and blocks work.

Implementing Fixnum#times

While it’s not surprising that Ruby is an object-oriented language, the extent
of “object-orientedness” often surprises newcomers to Ruby. For example,

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

Block Pattern #1: Enumeration ® 9

most wouldn’t associate a number with the notion of an object. However,
Ruby begs to differ by making code like this possible:

>> 3.times { puts "Eat my shorts!" }

Eat my shorts!

Eat my shorts!

Eat my shorts!

=> 3

How is this possible? The answer is two-fold. First, 3 is an object of the Fixnum
class. Second, the Fixnum#times() method is what makes the preceding code
possible.

What can we say about the Fixnum#times() method? Well, it executes the block
exactly three times. This information is taken from the instance of the Fixnum,
3. This detail is important, as you will soon see.

What can we say about the parameters of the block? Well, not much, since
the block doesn’t take any parameters. Let’s implement Fixnum#times(). Addi-
tionally, we will assume that each() doesn’t exist.

Create a file called fixnum_times.rb. Fill in an initial implementation like so:

class Fixnum

def times
puts "This does nothing yet!"
end
end

Thanks to Ruby’s open classes, we have now just overridden the default ver-
sion of Fixnum#times() and replaced it with our own (currently non-working)
one. Load the file in irb using the following command:

$ irb -r ./fixnum_times.rb

Let’s try this out:

>> 3.times { puts "Eat my shorts!" }
puts "This does nothing yet!"
=> nil

For now, nothing happens since we have overridden the default Fixnum#times()
method with our empty implementation. Remember that we imposed the
constraint that we cannot use Array#each()? The reason is that would make
things too easy for us. We can fall back to a while loop:

blocks/fixnum_times.rb
class Fixnum
def times
X =0

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/btrubyclo/code/blocks/fixnum_times.rb
http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

°10

while x < self
X +=1
yield
end
self
end
end

Now, redo the steps with the updated code:

% irb -r ./fixnum times.rb

>> 3.times { puts "Eat my shorts!" }
Eat my shorts!

Eat my shorts!

Eat my shorts!

= 3

Again, self is the Fixnum instance, also known as 3 in our example. In other
words, it is using the value of the number to perform the same number of
iterations. Pretty nifty, if you ask me.

The most important part of the code here is yield. In this example, yield is called
without any arguments, which is exactly what the original implementation
expects. The return value of the times() method is the number itself, hence self
is returned at the end of the method.

Let’s keep up the momentum and implement Array#each().

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

