
Extracted from:

Mastering Ruby Closures
A Guide to Blocks, Procs, and Lambdas

This PDF file contains pages extracted from Mastering Ruby Closures, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Mastering Ruby Closures
A Guide to Blocks, Procs, and Lambdas

Benjamin Tan Wei Hao

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian P. Hogan
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-261-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

The Power of Procs and Lambdas
Recall that blocks by themselves are not objects—they cannot exist by
themselves. In order to do anything interesting with a block, you need to pass
a block into a method.

Procs have no such restrictions, because they are objects. They allow you to
represent a block of code (anything between a do ... end) as an object. Some
languages call these anonymous functions, and indeed, they do play the part.

Procs are ubiquitous in real-world Ruby code, although chances are, you might
not be using them that much. Through the examples, you’ll learn how to use
them effectively in your own code.

Ruby also uses Procs to perform some really nifty tricks. For example, have
you ever wondered how ["o","h","a","i"].map(&:upcase) expands to ["o","h","a","i"].map
{ |c| c.upcase) }? By the end of this chapter, you’ll understand the mechanics
of how Ruby performs this sleight of hand.

Procs also assume another form: lambdas. While they serve similar functions
(pun intended!), it is also important to learn about their differences, so that
you will know when to use which at the right time.

One technique that Procs enable but hasn’t seen very wide use is currying, a
functional programming concept. Although its practical uses (with respect to
Ruby programming) are pretty limited, it’s still a fun topic to explore.

By the end of this chapter, you should be comfortable enough to use Procs
and lambdas in your own code and make them an indispensable part of your
Ruby toolbox.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

Procs and the Four Ways of Calling Them
Unlike the language named after a certain serpent, Ruby embraces
TMTOWTDI (pronounced as Tim Toady), or There’s more than one way to do
it. The calling of Procs is a wonderful example. In fact, Ruby gives you four
different ways:

1. Proc#call(args)

2. .(args)()

3. Threequals

4. Lambdas

Fire up irb. Let’s begin by creating a very simple Proc:

>> p = proc { |x, y| x + y }
=> #<Proc:0x007ffb12907940@(irb):1>

There are two things to notice here. First, the return value tells you that a
Proc has been created. Second, Ruby provides a shorthand to create Procs. This
is really a method in the Kernel class:

>> p = Kernel.proc { |x, y| x + y }
=> #<Proc:0x007ffb12907940@(irb):1>

Of course, since Proc is just like any other class, you can create an instance
of it the usual way:

>> p = Proc.new { |x, y| x + y }
=> #<Proc:0x007ffb12907940@(irb):1>

Now you know how to create a Proc. Time to make it do some work. The first
way is to use Proc#call(args)():

>> p = proc { |x,y| x + y }

>> p.call("oh", "ai")
=> "ohai"

>> p.call(4, 2)
=> 6

In fact, this is my preferred way of invoking Procs because it conveys the intent
of invocation much better than the alternatives, which are presented next.

Ruby provides a shorthand for the call(args)() method: .(args)(). Therefore, the
previous example could have been rewritten as such:

>> p = proc { |x,y| x + y }
>> p.("oh", "ai")

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

>> p.(4, 2)

Here’s an interesting Ruby tidbit. Turns out, the .() syntax works across any
class that implements the call() method. For example, here’s a class with only
the call() method:

class Carly
def call(who)

"call #{who}, maybe"
end

end

c = Carly.new
c.("me") # => "call me, maybe"

You should avoid using .() if you can, because this could potentially confuse
other people who might not be familiar with the syntax.

Ruby has an even quirkier syntax for invoking Procs:

p = proc { |x,y| x + y }
p === ["oh", "ai"]

The === operator is also known as the threequals operator. This operator
makes it possible to use a Proc in a case statement. Look at the following code:

even = proc { |x| x % 2 == 0 }
case 11

when even
"number is even"

else
"number is odd"

end

Here, even, when given a number, returns true or false depending on the case
statement. For example:

>> even = proc { |x| x % 2 == 0 }
>> even === 11
=> false
>> even === 10
=> true

Note that invoking a Proc that expects a single argument this way is incorrect
and results in a confusing error message:

>> even = proc { |x| x % 2 == 0 }
>> even === [11]
NoMethodError: undefined method `%' for [11]:Array

from (irb):1:in `block in irb_binding'

Next, let’s look at lambdas and how they relate to Procs.

• Click HERE to purchase this book now. discuss

Procs and the Four Ways of Calling Them • 9

http://pragprog.com/titles/btrubyclo
http://forums.pragprog.com/forums/btrubyclo

