
Extracted from:

RubyMotion
iOS Development with Ruby

This PDF file contains pages extracted from RubyMotion, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

RubyMotion
iOS Development with Ruby

Clay Allsopp

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Kim Wimpsett (copyeditor)
David J. Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-28-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—July 2014

http://pragprog.com
rights@pragprog.com

CHAPTER 3

Organizing Apps with Controllers
iOS apps usually consist of more than simple rectangles and buttons. We
can easily build complex interfaces using the SDK; however, we need to first
learn about controllers in order to create them.

Views are only one leg of the Model-View-Controller (MVC) programming
paradigm adopted by the iOS SDK. A “programming paradigm” sounds
intimidating, but MVC is actually fairly simple. The basic idea is that your
code should have three types of objects: models to represent data, views to
display those models, and controllers to process user input.

You can think of controllers as a layer between the user and the rest of your
code. Their role is to interpret events and forward the changes to the relevant
models and views. For example, tapping a button should be detected by a
controller, which then increments a data property (model) and updates a label
to reflect the change (view).

Controllers are instances of UIViewController in iOS. The SDK comes with several
UIViewController subclasses with custom views and behavior to give every app
the same look and feel. Controllers are absolutely central to iOS development,
so we’re going to take a look at how we use them.

Adding a New UIViewController
As the name suggests, UIViewControllers are objects that control a view. The
UIViewController object stores the UIView it manages inside the view attribute.
However, we generally don’t use addSubview: to add this particular view to the
screen; instead, various methods will often take the entire UIViewController object
and adjust the view as necessary before adding it to a hierarchy.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Let’s get started with a small project to see how UIViewController works, and
you’ll see what I mean. We’ll create an app showing different ways to explore
colors, specifically, motion create ColorViewer.

First we make the ./app/controllers directory (mkdir ./app/controllers). This is where
we’ll keep all of our controller classes. When building production-level apps,
you should also add views and models subdirectories, but we won’t be needing
those right now.

Then we add a colors_controller.rb file in controllers. This will be our custom UIView-
Controller subclass that’s presented to the user. We’ll start by setting its
superclass and adding one short method.

controllers/ColorViewer/app/controllers/colors_controller.rb
class ColorsController < UIViewController

def viewDidLoad
super

self.view.backgroundColor = UIColor.whiteColor

@label = UILabel.alloc.initWithFrame(CGRectZero)
@label.text = "Colors"
@label.sizeToFit
@label.center =
[self.view.frame.size.width / 2,
self.view.frame.size.height / 2]

@label.autoresizingMask =
UIViewAutoresizingFlexibleBottomMargin | UIViewAutoresizingFlexibleTopMargin

self.view.addSubview(@label)
end

end

Subclassing UIViewController always involves overriding viewDidLoad(). This method
is called right after our controller’s view has been created and is where we do
whatever custom setup is necessary. For now, we just set the view’s back-
ground color, add a label, and call it a day.

viewDidLoad() is one of the view life-cycle methods. Every controller’s view goes
through several stages: creation, appearance, disappearance, and destruction.
You can add custom behaviors at each point using the corresponding life-
cycle methods, but the most common is viewDidLoad().

Now that we have our controller, open our AppDelegate. We’re going to create
a UIWindow just like we did in the previous chapter, except we’re now going to
use the rootViewController=() method instead of addSubview:.

Chapter 3. Organizing Apps with Controllers • 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer/app/controllers/colors_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

controllers/ColorViewer/app/app_delegate.rb
class AppDelegate

def application(application, didFinishLaunchingWithOptions:launchOptions)
@window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
@window.makeKeyAndVisible

@window.rootViewController =
ColorsController.alloc.initWithNibName(nil, bundle: nil)

true
end

end

rootViewController=() will take the UIViewController and adjust the view’s frame to fit
the window. This lets us write our controller without hard-coding its size,
making our controller reusable to other containers. As we said earlier, methods
in which you pass a UIViewController are very common, as we’ll soon see.

We instantiate UIViewControllers with initWithNibName:bundle:. This method can be
used to load a controller from a .NIB/.XIB file created using Xcode’s Interface
Builder, but in this case, we passed nil, meaning the controller will be created
programatically.1

initWithNibName:bundle: is the designated initializer of UIViewController. Whenever
you want to create a controller, you must call this method at some point,
either directly or inside the definitions of your custom initializers (such as
controller.initWithSome:property:).

Let’s run our app and check it out:

1. RubyMotion does support Interface Builder; simply add your .NIB or .XIB files to the
project’s ./resources directory. Using Interface Builder is beyond the scope of this text,
but you can use the IB RubyGem (https://github.com/RubyMotion/ib) to help connect your
Ruby- Motion code inside Interface Builder.

• Click HERE to purchase this book now. discuss

Adding a New UIViewController • 7

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer/app/app_delegate.rb
https://github.com/RubyMotion/ib
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

As we saw in Making Shapes and Colors, on page ?, a few addSubview:s could
have given us the same result, but using controllers creates a view that can
easily fit into different containers. In fact, we’re going to do just that with
UINavigationController in Using Multiple Controllers with UINavigationController,
on page 8.

super and the Life-Cycle Methods

It’s a good habit to call super() in viewDidLoad() and the other life-cycle methods. The
default implementations of UIViewController can have important setup details, and you
may experience some unexpected and hard-to-debug behavior if you don’t call them;
this is particularly true if you start subclassing UINavigationController or UITableViewController.

In some cases, notably viewDidAppear, Apple explicitly says you need to call the super-
class method in any UIViewController subclass. Refer to Apple’s documentationa for more
details.

a. http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/
Reference.html

Using Multiple Controllers with UINavigationController
Although some iOS apps are famous for their unique visuals, most apps share
a common set of interface elements and interactions included with the SDK.
Typical apps will have a persistent top bar (usually blue) with a title and some
buttons; these apps use an instance of UINavigationController, one of the standard
container controllers in iOS.

Containers are UIViewController subclasses that manage many other child
UIViewControllers. Kind of wild, right? Containers have a view just like normal
controllers, to which their children controllers’ views are added as subviews.
Containers add their own UI around their children and resize their subviews
accordingly. UINavigationController adds a navigation bar and fits the children
controllers below, like this:

UINavigationController manages its children in a stack, pushing and popping views
on and off the screen. Visually, new views are pushed in from the right, while
old views are popped to the left. For example, Mail.app uses this to dig down
from an inbox to an individual message. UINavigationController also automatically
handles adding the back button and title for you; all you need to worry about

Chapter 3. Organizing Apps with Controllers • 8

• Click HERE to purchase this book now. discuss

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

is pushing and popping the controller objects you’re using. Check out the
following to see how Settings.app uses navigation controllers.

UINavigationController is pretty easy to integrate. In AppDelegate, we change our
rootViewController() assignment to use a new UINavigationController.

controllers/ColorViewer_nav/app/app_delegate.rb
class AppDelegate

def application(application, didFinishLaunchingWithOptions:launchOptions)
@window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
@window.makeKeyAndVisible
controller = ColorsController.alloc.initWithNibName(nil, bundle: nil)➤

nav_controller =➤

UINavigationController.alloc.initWithRootViewController(controller)➤

@window.rootViewController = nav_controller➤

true
end

end

initWithRootViewController: will take the given controller and start the navigation
stack with it. As we said earlier, the UINavigationController will handle adding and
resizing this controller’s view to fit to the appropriate size.

Before we run the app, we should make one more change in ColorsController.
Every UIViewController has a title(), which UINavigationController uses to set the top
bar’s title.

controllers/ColorViewer_nav/app/controllers/colors_controller.rb
self.view.addSubview(@label)
self.title = "Colors"➤

Run and check out our slightly prettier app:

• Click HERE to purchase this book now. discuss

Using Multiple Controllers with UINavigationController • 9

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_nav/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_nav/app/controllers/colors_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Excellent, let’s make it do something. We’ll add a few buttons to our view,
each representing a color. When a button is tapped, we’ll push a detail con-
troller with its color as the background. Visually, a new controller will slide
in from the right while the old ColorsController fades to the left.

First we need to add those buttons to the view at the end of viewDidLoad(). We’re
going to use some of Ruby’s dynamic features to get this done, primarily the
send() method. You can use any of the default UIColor helper methods like purple-
Color() or yellowColor(), but we’re going to stick with the basics.

controllers/ColorViewer_nav/app/controllers/colors_controller.rb
["red", "green", "blue"].each_with_index do |color_text, index|

color = UIColor.send("#{color_text}Color")
button_width = 80

button = UIButton.buttonWithType(UIButtonTypeSystem)
button.setTitle(color_text, forState:UIControlStateNormal)
button.setTitleColor(color, forState:UIControlStateNormal)
button.sizeToFit
button.frame = [

[30 + index*(button_width + 10),
@label.frame.origin.y + button.frame.size.height + 30],

[80, button.frame.size.height]
]
button.autoresizingMask =

UIViewAutoresizingFlexibleBottomMargin | UIViewAutoresizingFlexibleTopMargin
button.addTarget(self,

action:"tap_#{color_text}",
forControlEvents:UIControlEventTouchUpInside)

self.view.addSubview(button)
end

See the color = UIColor.send("#{color_text}Color") trick? This lets us create the UIColor,
button text, and button callback all with a single color_text variable. If you run
our app now, you should see the three buttons just like this (but don’t tap
any quite yet):

Chapter 3. Organizing Apps with Controllers • 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_nav/app/controllers/colors_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Now on to implementing those button callbacks. For each of these, we’ll need
to push a new view controller onto our UINavigationController’s stack. UIViewControllers
happens to have a navigationController() property, which lets us access the parent
UINavigationController. This navigationController() is automatically set whenever we
add a view controller to a navigation stack, which we did with initWithRootView-
Controller:. With that in mind, our button callbacks look something like this:

controllers/ColorViewer_nav/app/controllers/colors_controller.rb
def tap_red

controller = ColorDetailController.alloc.initWithColor(UIColor.redColor)
self.navigationController.pushViewController(controller, animated: true)

end
def tap_green

controller = ColorDetailController.alloc.initWithColor(UIColor.greenColor)
self.navigationController.pushViewController(controller, animated: true)

end
def tap_blue

controller = ColorDetailController.alloc.initWithColor(UIColor.blueColor)
self.navigationController.pushViewController(controller, animated: true)

end

We call pushViewController:animated: on the navigation controller, which pushes
the passed controller onto the stack. By default, the navigation controller will
also create a back button that will handle popping the frontmost child
controller for us. If you need to do that programmatically, just call popViewCon-
trollerAnimated:() on UINavigationController.

We referenced a new ColorDetailController class, so let’s implement that. First we
create color_detail_controller.rb in ./app/controllers. We’ll keep it simple and just set
the title and background color.

controllers/ColorViewer_nav/app/controllers/color_detail_controller.rb
class ColorDetailController < UIViewController

def initWithColor(color)
self.initWithNibName(nil, bundle:nil)
@color = color
self.title = "Detail"
self

end
def viewDidLoad

super

self.view.backgroundColor = @color
end

end

Start by defining a new initializer, initWithColor:, which takes a UIColor as its
argument. Our implementation of this method uses UIViewController’s designated

• Click HERE to purchase this book now. discuss

Using Multiple Controllers with UINavigationController • 11

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_nav/app/controllers/colors_controller.rb
http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_nav/app/controllers/color_detail_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

initializer initWithNibName:bundle:(), which is required for any controller initializer
we write. You also need to return self from these functions, which should make
sense given all the times we assign a variable from these methods (such as
controller = UIViewController.alloc.initWithNibName(nil, bundle: nil)).

It’s time to rake and play with our navigation stack. It should look like this:

Check out the slick animations on the navigation bar, where the title simul-
taneously fades and slides as a new controller is pushed.

Many apps structure their interface using UINavigationController, where each
pushed controller gradually reveals more detailed data. As you saw, there are
only a couple of methods we need to implement that user interface. However,
some apps need more than this kind of hierarchal layout. UITabBarController is
another widely used container controller, and in Separating Controllers with
UITabBarController, on page 12 we’re going to add it to our app.

Separating Controllers with UITabBarController
UITabBarController functions an awful lot like UINavigationController. The children
controllers’ views fit above the black tab bar, where each tab corresponds to
one child. The Music app shows a tab with room for four controllers:

The fact that the More tab appears here indicates there are more than five
children.

Unlike other containers, UITabBarControllers are only to be used as the rootViewCon-
troller() of a UIWindow. You cannot push an instance of UITabBarController in

Chapter 3. Organizing Apps with Controllers • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

pushViewController:animated:. From a user-experience perspective, this means you
should use a tab bar only if contains very distinct and globally applicable
controllers.

Just like UINavigationController, tab bars are easy to add. It just takes a small
change to AppDelegate.

controllers/ColorViewer_tab/app/app_delegate.rb
controller = ColorsController.alloc.initWithNibName(nil, bundle: nil)
nav_controller =

UINavigationController.alloc.initWithRootViewController(controller)
tab_controller =

UITabBarController.alloc.initWithNibName(nil, bundle: nil)
tab_controller.viewControllers = [nav_controller]
@window.rootViewController = tab_controller

We create a UITabBarController like a normal UIViewController and set its viewControllers()
to an array containing our navigation controller. The order of viewControllers()
corresponds to the left-to-right order of the tabs.

When you run our app, you can see the top and bottom bars typical to most
iOS apps implemented with a pretty small amount of code. Since it’s not very
helpful to have just one unstyled tab, let’s fix that.

Every UIViewController has a tabBarItem() property, which accepts UITabBarItem, an
object containing information about how to draw the view for the controller
in the bottom tab bar. It is not a UIView but rather a plain object that the system
uses to construct a view. We use the UITabBarItem to customize the icon, title,
and other appearance options for the controller’s tab.

The first step is to override initWithNibName:bundle: in ColorsController, and then we
can create our UITabBarItem.

controllers/ColorViewer_tab/app/controllers/colors_controller.rb
def initWithNibName(name, bundle: bundle)

super
self.tabBarItem =

UITabBarItem.alloc.initWithTitle(
"Colors",
image: nil,
tag: 1)

self
end

initWithTitle:image:tag: is one initializer for UITabBarItem, which we can use to set a
custom image and title. tag: can be used to uniquely identify the tab bar item,
but we won’t be using it here. image should be a 30x30 black and transparent
icon. Setting image to nil means we won’t display images here.

• Click HERE to purchase this book now. discuss

Separating Controllers with UITabBarController • 13

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_tab/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_tab/app/controllers/colors_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

You can also use the initWithTabBarSystemItem:tag: initializer to automatically set
the title and image, assuming your tab corresponds to one of the default styles
(such as Favorites or Contacts).

Why did we create our tab item in initWithNibName:bundle:? We want to create the
tabBarItem() as soon as the controller exists, regardless of whether its view has
been created yet. UITabBarController will load the views only when absolutely
necessary, so if you wait to create the tab item in viewDidLoad(), then some
controllers’ items might not be set when the app is done launching.

One more thing! We should probably add another tab, right? We’ll pretend
this is the Top Color section, where we can view the most popular color. This
way we can reuse our ColorDetailController.

controllers/ColorViewer_tab/app/app_delegate.rb
top_controller = ColorDetailController.alloc.initWithColor(UIColor.purpleColor)
top_controller.title = "Top Color"
top_nav_controller =

UINavigationController.alloc.initWithRootViewController(top_controller)
tab_controller.viewControllers = [nav_controller, top_nav_controller]

Run the rake command once again, and voila! You should see a whole bunch
of container controllers like this:

Before we add even more content to our app, let’s take a moment to examine
a few of the more subtle details of controllers.

The Edges of UIViewControllers
If you take a look at our second tab, you should notice that the purple back-
ground extends underneath the tab bar. In fact, all of our colored screens
extend underneath the default iOS navigation elements. How does that
happen?

Prior to iOS7, the navigation bar, tab bar, and other interface elements were
opaque, so any interior controllers were sized to always be visible on the
screen. But with the release of iOS7, many interface elements switched to a
translucent visual effect, and Apple encourages apps to take advantage of
that by layering their controllers and views.

Chapter 3. Organizing Apps with Controllers • 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_tab/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

This present a few problems: what if we don’t want important items to be
hidden below the bars? What if we don’t want anything underneath? Apple
provides a few methods on UIViewController to help us out.

If you don’t want any part of your controller to show up underneath the
navigation chrome, you can use the edgesForExtendedLayout() property of your
UIViewController. For example, to prevent our second tab from leaking its color
under the tab bar, we just change this property to UIRectEdgeNone:

controllers/ColorViewer_edge/app/app_delegate.rb
top_controller.title = "Top Color"
top_controller.edgesForExtendedLayout = UIRectEdgeNone➤

top_nav_controller =
UINavigationController.alloc.initWithRootViewController(top_controller)

tab_controller.viewControllers = [nav_controller, top_nav_controller]

Try out the app and see how the purple is no longer slipping under the navi-
gation bar or tab bar. We could even set the edgesForExtendedLayout() property
somewhere in the definition of our UIViewController subclass, like viewDidLoad(), if
we never wanted this class to extend its edges.

Our controllers don’t do a whole lot, but you can see how these two classes
form the building blocks of many iOS apps. UINavigationController and UITabBarCon-
troller provide easy ways to organize many different parts of your app, but what
if we really need to focus the user’s attention on just one screen? Well, it
turns out that we can also present controllers modally in front of all other
controllers.

Presenting Modal UIViewControllers
Sometimes we want one controller to take up the entire screen to get a user’s
attention. For example, Mail.app’s New Message screen appears on top of the
usual inbox list, forcing the user to either complete the message or explicitly
end the task. To accomplish this, we present the controller modally.

UIViewControllers allows us to present modal view controllers at any point in
their life cycle. The key method is presentViewController:animated:completion:, which
functions similarly to UINavigationController’s pushViewController:animated:. The given
controller will be presented above all other controllers in the app and will
remain there until we invoke dismissViewControllerAnimated:completion:.

Let’s present a modal controller from our Top Color controller. The presented
controller will allow us to change the top color, which is definitely a task best
done while the rest of the interface is obscured.

• Click HERE to purchase this book now. discuss

Presenting Modal UIViewControllers • 15

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_edge/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

First we need a button in the navigation bar at the top of the screen that
presents this modal controller. We saw UIButton in Chapter 2, Filling the Screen
with Views, on page ?, but we need to use a different class for bar buttons:
UIBarButtonItem. This isn’t a subclass of UIView; instead, it’s a plain-old Ruby
object that we use to specify the text, image, and style of the bar button. The
system will then take care of how to draw and add the button specifications
as a view, much like UITabBarItem.

Let’s add our bar button to our app. In ColorDetailController, we create the button
item in viewDidLoad() like so:

controllers/ColorViewer_modal/app/controllers/color_detail_controller.rb
rightButton =

UIBarButtonItem.alloc.initWithTitle("Change",
style: UIBarButtonItemStyleBordered,
target:self,
action:'change_color')

self.navigationItem.rightBarButtonItem = rightButton
end

We create our UIBarButtonItem instance with a title and a style. The style property
determines how our button looks: it can be plain, bordered, or “done” (play
around to see the difference). We then set the new UIBarButtonItem as our con-
troller’s navigationItem()’s rightBarButtonItem(). Every UIViewController has a navigationItem(),
which is how we access all the information displayed in the top bar. Again,
note that UINavigationItem is not a UIView, so you cannot add new subviews to it.

We also assign a target and action in the initializer, which function in the same
manner as when we call addTarget:action:forControlEvents: on a UIButton.

We haven’t implemented change_color() yet, so let’s get to it. To make modal
controllers stand out even more, it’s a common practice to wrap them in a
small UINavigationController. All we need to do is call presentViewController:animated:com-
pletion: with that controller, so it’s short and sweet.

controllers/ColorViewer_modal/app/controllers/color_detail_controller.rb
def change_color

controller = ChangeColorController.alloc.initWithNibName(nil, bundle:nil)
controller.color_detail_controller = self
self.presentViewController(

UINavigationController.alloc.initWithRootViewController(controller),
animated:true,
completion: lambda {})

end

Everything looks normal except the lambda in completion. Just like the view
animations we saw in Animating Views, on page ?, presenting controllers

Chapter 3. Organizing Apps with Controllers • 16

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_modal/app/controllers/color_detail_controller.rb
http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_modal/app/controllers/color_detail_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

take an anonymous callback function. We don’t need to do any special
behavior right now, but it’s there if you ever need it. Our presented controller
is a new ChangeColorController object, which is a class we don’t have yet.

Create change_color_controller.rb in ./app/controllers; this will be the controller that
we actually present. It won’t be a super-complicated class: we’ll add a text
field for the user to enter the color, as well as a button to enact that change.
But before all that, we need to set up the plumbing.

controllers/ColorViewer_modal/app/controllers/change_color_controller.rb
class ChangeColorController < UIViewController

attr_accessor :color_detail_controller

We start with Ruby’s nifty attr_accessor() to create the methods color_detail_controller()
and color_detail_controller=(). We need these so we can easily store a reference to
the ColorDetailController whose color we’re changing.

The ChangeColorController modal view also needs a UITextField and UIButton, both of
which we covered in Chapter 2, Filling the Screen with Views, on page ?.
When the button is tapped, we’ll take whatever is in the text field and use
that to create a UIColor that ColorDetailController can use. Just like the other con-
trollers, this logic belongs in viewDidLoad().

controllers/ColorViewer_modal/app/controllers/change_color_controller.rb
def viewDidLoad

super
self.title = "Change Color"
self.view.backgroundColor = UIColor.whiteColor
@text_field = UITextField.alloc.initWithFrame(CGRectZero)
@text_field.borderStyle = UITextBorderStyleRoundedRect
@text_field.textAlignment = UITextAlignmentCenter
@text_field.placeholder = "Enter a color"
@text_field.frame = [CGPointZero, [150,32]]
@text_field.center =

[self.view.frame.size.width / 2, self.view.frame.size.height / 2 - 170]
self.view.addSubview(@text_field)
@button = UIButton.buttonWithType(UIButtonTypeSystem)
@button.setTitle("Change", forState:UIControlStateNormal)
@button.frame = [[

@text_field.frame.origin.x,
@text_field.frame.origin.y + @text_field.frame.size.height + 10

],
@text_field.frame.size]

self.view.addSubview(@button)
@button.addTarget(self,

action:"change_color",
forControlEvents:UIControlEventTouchUpInside)

end

• Click HERE to purchase this book now. discuss

Presenting Modal UIViewControllers • 17

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_modal/app/controllers/change_color_controller.rb
http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_modal/app/controllers/change_color_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

It’s lengthy, but most of the code just lays out our views. We position @text_field
slightly above the center of the view and then position @button right below.
Finally, we set our callback to be change_color(), so we need to write that too.

controllers/ColorViewer_modal/app/controllers/change_color_controller.rb
def change_color

color_text = @text_field.text
color_text ||= ""
color_text = color_text.downcase
color_method = "#{color_text}Color"
if UIColor.respond_to?(color_method)
color = UIColor.send(color_method)
self.color_detail_controller.view.backgroundColor = color
self.dismissViewControllerAnimated(true, completion: nil)
return

end

@text_field.text = "Error!"
end

end

First we try to generate a UIColor from @text_field.text. We use respond_to?() to catch
invalid colors (like “catdogColor”), but if nothing bad happens, then we forge
ahead. We grab a reference to our ColorDetailController using color_detail_controller(),
set its background color, and then dismiss ourselves with dismissViewControllerAn-
imated:completion:(). Not bad at all, right?

Take our app for a spin, and everything should go smoothly, as in the following
figure:

Figure 6—Changing the color from a text field

Make sure to test our exception handling in ChangeColorController, as well some
less-known UIColor helpers like magenta or cyan.

Chapter 3. Organizing Apps with Controllers • 18

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/controllers/ColorViewer_modal/app/controllers/change_color_controller.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

We made some really tangible progress in this chapter as we built software
that looks and acts like what’s expected on iOS. The code we went through
should give you a better idea about the biggest difference between the iOS
APIs and plain Ruby: the original Objective-C method names are very verbose.
Need I say even more than UIViewAutoresizingFlexibleBottomMargin? Thankfully, we
pulled a few Ruby tricks with UIColor.send and saved even more boilerplate by
removing the need for header files and complex class definitions just with
attr_accessor().

Our apps can now be organized using the standard UI patterns, but that last
example showed a significant gap in our knowledge: changing data can be
messy. Passing the ColorDetailController as a property and altering its view
directly is less than desirable. We’re going to cover a more automatic way of
handling those kind of data changes and more in Chapter 4, Representing
Data with Models, on page ?.

• Click HERE to purchase this book now. discuss

Presenting Modal UIViewControllers • 19

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

