
Extracted from:

RubyMotion
iOS Development with Ruby

This PDF file contains pages extracted from RubyMotion, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

RubyMotion
iOS Development with Ruby

Clay Allsopp

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Kim Wimpsett (copyeditor)
David J. Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-28-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—July 2014

http://pragprog.com
rights@pragprog.com

Animating Views
We talked about how important views are on iOS, but apps are also known
for their smooth animations. Perhaps one reason slick transitions and niceties
are so pervasive in iOS apps is that they’re so darn easy to implement. And
we’re going to add that to our little box app right now.

Let’s add another button, Remove, which will fade out the most recently added
view and slide all others to new positions in its place. That might sound
complicated, and on other platforms or frameworks it might be, but the iOS
animation APIs make it painless. All we do is tell the system what properties
of our views to animate and how long that animation should take.

We will add yet another button to our AppDelegate and wire its target/action
callbacks for removing a view.

views/Boxey_animations/app/app_delegate.rb
@add_button.addTarget(

self, action:"add_tapped", forControlEvents:UIControlEventTouchUpInside)
@remove_button = UIButton.buttonWithType(UIButtonTypeSystem)
@remove_button.setTitle("Remove", forState:UIControlStateNormal)
@remove_button.sizeToFit
@remove_button.frame = CGRect.new(

[@add_button.frame.origin.x + @add_button.frame.size.width + 10,
@add_button.frame.origin.y],

@remove_button.frame.size)
@window.addSubview(@remove_button)
@remove_button.addTarget(

self, action:"remove_tapped",
forControlEvents:UIControlEventTouchUpInside)

Pretty easy, right? Basically, all we did was set a frame and add a subview;
that’s nothing new. Now we need to implement that remove_tapped() callback.
It’s going to be longer than our add_tapped() method, so we’ll take it slow. First,
we need to find the objects we’re interested in.

views/Boxey_animations/app/app_delegate.rb
def remove_tapped

other_views = @window.subviews.reject { |view|
view.is_a?(UIButton)

}
last_view = other_views.last
return unless last_view && other_views.count > 1

Because our buttons are also subviews of the window, we need to prune them
and make sure we deal only with the blue boxes. There are better ways to
architect this (such as storing the boxes in some independent array), but this
works with what we have. Next, we do the actual animations!

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/views/Boxey_animations/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_animations/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

views/Boxey_animations/app/app_delegate.rb
animations_block = lambda {

last_view.alpha = 0
last_view.backgroundColor = UIColor.redColor
other_views.reject { |view|
view == last_view

}.each { |view|
new_origin = [

view.frame.origin.x,
view.frame.origin.y - (last_view.frame.size.height + 10)

]
view.frame = CGRect.new(

new_origin,
view.frame.size)

}
}
completion_block = lambda { |finished|

last_view.removeFromSuperview
}
UIView.animateWithDuration(0.5,

animations: animations_block,
completion: completion_block)

end

Animations revolve around the UIView.animateWithDuration:animations: group of
methods (you can also use animateWithDuration:delay:options:animations:completions: if
you need to fine-tune things). Any alterations to your views made in the
lambda we pass for animations will animate if possible. Beyond the basics like
frame and opacity, most sensible properties of UIView will work as expected.3 In
our case, we fade out the box by setting the floating-point alpha to zero. Then
we enumerate through all the other views and adjust their frames.

We use the optional completion: argument to get a callback when the animation
finishes. This block takes one boolean argument, which tells us if the callback
has been fired when the animation actually completed (the callback may fire
prematurely if the animation has been canceled elsewhere). This is a good
place to clean up our views, which we do here by invoking removeFromSuperview().
This will remove the view from its parent’s subviews and be erased from the
screen.

The animation function looks a bit strange because of the multiple lambdas,
but it’s no different from changing those properties of a view when they’re
static. Give it a rake, add some boxes, and then watch them float away with
the Remove button:

3. You can find a full list of animatable properties at:
http://developer.apple.com/library/ios/#documentation/uikit/reference/uiview_class/uiview/uiview.html.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/views/Boxey_animations/app/app_delegate.rb
http://developer.apple.com/library/ios/#documentation/uikit/reference/uiview_class/uiview/uiview.html
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Adding Static Text with UILabel
Animations are fun, but we also need to display information long enough for
the user to actually read it. In most cases, we can use UILabel to display static
text. Labels can be very flexible, allowing you to change everything from the
font to minute adjustments with the text baseline, and are really easy to get
up and running. Let’s add one to our little app.

We’re going to add a UILabel to each box, displaying its index in subviews. We
probably wouldn’t ship that sort of feature, but it’s really handy for debugging
and might give us a better idea of what’s going on in our animation. UILabel is
really lightweight, so it won’t be a pain to add.

Adding labels is going to occur in a new method called add_label_to_box(). This
method will figure out the index of a given box’s UIView instance and add the
correct UILabel. This is the important part of the code, so let’s take a look at it
first.

views/Boxey_label/app/app_delegate.rb
def add_label_to_box(box)

box.subviews.each do |subview|
subview.removeFromSuperview

end

index_of_box = @window.subviews.index(box)
label = UILabel.alloc.initWithFrame(CGRectZero)
label.text = "#{index_of_box}"
label.textColor = UIColor.whiteColor
label.backgroundColor = UIColor.clearColor
label.sizeToFit

• Click HERE to purchase this book now. discuss

Adding Static Text with UILabel • 7

http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

label.center = [box.frame.size.width / 2, box.frame.size.height / 2]
box.addSubview(label)

end

We start by removing all subviews from box, which handles the case where
we call this method multiple times on the same view (which we will). Our label
is initialized with CGRectZero, which is shorthand for a rectangle at the origin
and no size. After we set the text appropriately, we call sizeToFit() just like
UIButton. The UILabel implementation of sizeToFit() will precisely fill the frame to fit
the text, leaving no padding. Then we use the center property of UIView, which
is shorthand for putting the center of a view at a point (as opposed to the
upper-left corner).

Remember how we said subviews are positioned within their parent? Even
though we set the label to be centered at a coordinate like (50, 50), it can
exist at a different point within the window. As our animation slides the box,
its label will move too.

Not too bad, right? The only UILabel-exclusive properties in this example are
text and textColor; everything else is inherited from UIView. Now we need to
actually call this method.

We usually want to go through all the boxes each time we update the labels
so we can be absolutely sure our labels are in sync with subviews. To make our
lives easier, we’re going to refactor the logic for picking out boxes from
@window.subviews into one method that simply returns only the boxes.

views/Boxey_label/app/app_delegate.rb
def boxes

@window.subviews.reject do |view|
view.is_a?(UIButton) or view.is_a?(UILabel)

end
end

We can combine our two new methods into one really great helper method
that takes care of everything.

views/Boxey_label/app/app_delegate.rb
def add_labels_to_boxes

self.boxes.each do |box|
add_label_to_box(box)

end
end

Finally, we can put these to some use, first in application:didFinishLaunchingWithOptions:

views/Boxey_label/app/app_delegate.rb
@window.addSubview(@blue_view)
add_labels_to_boxes➤

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

and then down in add_tapped().

views/Boxey_label/app/app_delegate.rb
@window.insertSubview(new_view, atIndex:0)
add_labels_to_boxes➤

Lastly, we need to reset the labels for each box after we run the removal ani-
mation. We’re going to change our other_views to use self.boxes instead of its own
array construction. Then we’re going to use our handy add_labels_to_boxes() to
sync all the labels again.

views/Boxey_label/app/app_delegate.rb
def remove_tapped

other_views = self.boxes➤

last_view = other_views.last

views/Boxey_label/app/app_delegate.rb
completion_block = lambda { |finished|

last_view.removeFromSuperview
add_labels_to_boxes➤

}

Whew. Our UILabel was only a small part of our changes, but now we can
clearly see how our view hierarchy behaves at runtime. Run the app, and you
should see labels appear as in the following figure.

Figure 4—Labels reset for each box

Making Text Dynamic with UITextField
Most apps have more than just buttons and labels; usually we need the user
to enter some data, like a tweet or email address. UITextField is the basic view
we use to grab string-type input, and now we’re going to add one to our little
box app. It will let the user pick the UIColor of our boxes using simple commands
like “red” and “blue.” Let’s get started.

• Click HERE to purchase this book now. discuss

Making Text Dynamic with UITextField • 9

http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_label/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

First we need to add the field to the view hierarchy. UITextField puts many
configuration options at our disposal, from fonts to the look of the Return
key. We won’t be using all of its properties today, but you can consult Apple’s
documentation on the class for more information.4 Our field should be added
in app_delegate.rb like so:

views/Boxey_textfield/app/app_delegate.rb
@remove_button.addTarget(

self, action:"remove_tapped",
forControlEvents:UIControlEventTouchUpInside)

@color_field = UITextField.alloc.initWithFrame(CGRectZero)
@color_field.borderStyle = UITextBorderStyleRoundedRect
@color_field.text = "Blue"
@color_field.enablesReturnKeyAutomatically = true
@color_field.returnKeyType = UIReturnKeyDone
@color_field.autocapitalizationType = UITextAutocapitalizationTypeNone
@color_field.sizeToFit
@color_field.frame = CGRect.new(

[@blue_view.frame.origin.x + @blue_view.frame.size.width + 10,
@blue_view.frame.origin.y + @color_field.frame.size.height],

@color_field.frame.size)
@window.addSubview(@color_field)

@color_field.delegate = self➤

Like every other view in the window, we spend some time setting up the frame
and positioning it exactly where we want it. returnKeyType() and similar properties
control exactly what they say; the only cryptic property we use is UITextBorder-
StyleRoundedRect, which adds a nice border and inner shadow to our field. By
default, UITextFields have empty backgrounds and no default styling.

The most important part of our addition is setting @color_field’s delegate. Much
like our application uses AppDelegate as its delegate, other objects use the del-
egation pattern as a way of sending callback events. The UITextFieldDelegate
specification lists all of the methods the delegate object can implement.5 We
aren’t required to implement any of them, but we will implement textFieldShould-
Return: to intercept when the Return/Done key is pressed.

views/Boxey_textfield/app/app_delegate.rb
def textFieldShouldReturn(textField)

color_tapped
textField.resignFirstResponder

4. You can find the UITextField reference at http://developer.apple.com/library/ios/#documentation/uikit/
reference/UITextField_Class/Reference/UITextField.html.

5. You can find the UITextFieldDelegate reference at http://developer.apple.com/library/ios/#Documentation/
UIKit/Reference/UITextFieldDelegate_Protocol/UITextFieldDelegate/UITextFieldDelegate.html.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/views/Boxey_textfield/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_textfield/app/app_delegate.rb
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextField_Class/Reference/UITextField.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextField_Class/Reference/UITextField.html
http://developer.apple.com/library/ios/#Documentation/UIKit/Reference/UITextFieldDelegate_Protocol/UITextFieldDelegate/UITextFieldDelegate.html
http://developer.apple.com/library/ios/#Documentation/UIKit/Reference/UITextFieldDelegate_Protocol/UITextFieldDelegate/UITextFieldDelegate.html
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

false
end

resignFirstResponder looks a little cryptic, but in reality it simply hides the key-
board. In iOS, there’s a concept of a responder chain that determines how
events such as taps are propagated among our objects. We won’t deal with
the responder chain in this book, but the important thing to remember is
that the first responder of a text field is almost always the virtual keyboard.
You also may notice that we explicitly return false from textFieldShouldReturn:, but
why is that? Whatever you return from this method decides whether the
UITextField carries out the default behavior of its Return key; in our case, we’re
hiding the keyboard, and the normal action should be avoided.

Finally, we need to implement the color_tapped() method we called in textFieldShould-
Return:. We’re going to read the text property of the text field and use the Ruby
metaprogramming send() method to create a UIColor from that string.

views/Boxey_textfield/app/app_delegate.rb
def color_tapped

color_prefix = @color_field.text
color_method = "#{color_prefix.downcase}Color"
if UIColor.respond_to?(color_method)

@box_color = UIColor.send(color_method)
self.boxes.each do |box|
box.backgroundColor = @box_color

end
else

UIAlertView.alloc.initWithTitle("Invalid Color",
message: "#{color_prefix} is not a valid color",
delegate: nil,
cancelButtonTitle: "OK",
otherButtonTitles: nil).show

end
end

Since we’re feeling friendly, we alert the user if there is no such UIColor for their
input. But if we do succeed in creating a color object, we assign it to a @box_color
instance variable. We need to go back to other parts of the code to make sure
they also use @box_color; that way, events like adding a new box work as expected.

views/Boxey_textfield/app/app_delegate.rb
@window.makeKeyAndVisible
@box_color = UIColor.blueColor➤

@blue_view = UIView.alloc.initWithFrame(CGRect.new([10, 40], [100, 100]))
@blue_view.backgroundColor = @box_color➤

@window.addSubview(@blue_view)

views/Boxey_textfield/app/app_delegate.rb
def add_tapped

• Click HERE to purchase this book now. discuss

Making Text Dynamic with UITextField • 11

http://media.pragprog.com/titles/carubym/code/views/Boxey_textfield/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_textfield/app/app_delegate.rb
http://media.pragprog.com/titles/carubym/code/views/Boxey_textfield/app/app_delegate.rb
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

new_view = UIView.alloc.initWithFrame(CGRect.new([0, 0], [100, 100]))
new_view.backgroundColor = @box_color➤

All we’re doing here is changing the hard-coded use of blueColor to our new
instance variable. And there’s one more thing: we need to fix our boxes() method
to ignore the new UITextField.

views/Boxey_textfield/app/app_delegate.rb
def boxes

@window.subviews.reject do |view|
view.is_a?(UIButton) or view.is_a?(UILabel) or view.is_a?(UITextField)➤

end
end

Fantastic; let’s run rake again and play with the text field (see Figure 5, Playing
with the text field, on page 12). Be sure to try more exotic colors like “cyan”
and “magenta,” too.

Figure 5—Playing with the text field

Exploring RubyMotion Libraries
We whipped up a pretty interesting app using a relatively small amount of
code; however, we also used some vestigial Objective-C patterns that look
obviously out of place. This is one area where the RubyMotion community is
stepping up and wrapping un-Ruby code into more idiomatic structures.
Several libraries and RubyGems6 are available that could have helped us
manage our views.

For example, Sugarcube (https://github.com/rubymotion/sugarcube) would have allowed
us to replace those long animation method names with very concise functions
such as fade_out() and move_to().

last_view.fade_out { |view|

6. For a full explanation of RubyGems and RubyMotion, check out Third-Party Libraries
and RubyMotion, on page ?.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/carubym/code/views/Boxey_textfield/app/app_delegate.rb
https://github.com/rubymotion/sugarcube
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

last_view.removeFromSuperview
}

other_views.each do |view|
new_origin = [

view.frame.origin.x,
view.frame.origin.y - (last_view.frame.size.height)

]

view.move_to new_origin
end

Much better, right? And for more complex apps, the Teacup library7 allows
you to construct views using CSS-esque style sheets. Our blue boxes might
have Teacup style sheets defined like this:

7. https://github.com/rubymotion/teacup

• Click HERE to purchase this book now. discuss

Exploring RubyMotion Libraries • 13

https://github.com/rubymotion/teacup
http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

Teacup::Stylesheet.new :app do
style :blue_box,

backgroundColor: UIColor.blueColor,
width: 100,
height: 100

end

Third-party libraries like these are helping RubyMotion become more than
just an Objective-C/Ruby mashup. As you can see in the previous examples,
they can dramatically change how we express what we are trying to accomplish
in code. Later in Representing Data with Models and Example: Writing an API-
Driven App, we’ll actually use some third-party RubyMotion frameworks to
simplify otherwise complex elements of our apps.

But even without those niceties, we’ve gone from an empty app to an interac-
tive, animated UI in the span of a few quick examples. There are far more
included UIView subclasses than we have time for, but the ones we’ve covered
should make those a cinch to learn when the time comes.

By making a slightly more ambitious app, we have also gotten a chance to
see how the Ruby language can make our iOS development lives a little easier.
Take my word for it, RubyMotion methods such as Array#select and string
formatting ("#{ruby_code_here}") are more concise than their Objective-C coun-
terparts. Then again, we still have some very non-Ruby practices that leave
much to be desired, such as UITextField’s delegate pattern.

In the course of working on views, our AppDelegate got pretty crowded with all
kinds of code: helper functions, button callbacks, view creation...the works.
Real apps have much more robust organization in the form of controllers,
which we’ll cover now in Organizing Apps with Controllers.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/carubym
http://forums.pragprog.com/forums/carubym

