
Extracted from:

Deploying Rails
Automate, Deploy, Scale, Maintain,

and Sleep at Night

This PDF file contains pages extracted from Deploying Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

6.6 Monitoring Applications

The monitoring techniques we’ve seen have all been useful with any applica-
tion; check_disk is helpful for a Ruby on Rails application, a Java application,
or a static website, and check_passenger is useful for any Rails application. But
Nagios can also monitor an application’s specific data thresholds. Let’s see
how that’s done.

We’ve seen how Nagios uses plugins to bring in new functionality, and we’ve
written our own plugin to monitor Passenger memory usage. Now we’ll write
another plugin to check MassiveApp’s activity. Actually, most of the logic will
be in MassiveApp; we’ll write just enough of a plugin to connect to MassiveApp
and report a result.

For the specifics of this check, consider MassiveApp’s daily growth rate in
terms of accounts. In any twenty-four hours, we get around a dozen new
accounts. If we get many more than that, we want to get an alert so we can
think about firing up more servers.

We could do this check in a few different ways. We could query the MySQL
database directly, but although that would avoid the performance impact of
loading up the Rails framework, it would mean we couldn’t use our
ActiveRecord models with their handy scopes and such. We could use HTTP
to hit a controller action, but then we’d want to ensure that the action could
be accessed only by Nagios. So, we’ll keep it simple by using a Rake task.
First we’ll declare the task; we can put this in lib/tasks/monitor.rake. We’re
namespacing the task inside nagios; this keeps all our Nagios-related tasks in
one place.

monitoring/task_only/lib/tasks/monitor.rake
namespace :nagios do

desc "Nagios monitor for recent accounts"
task :accounts => :environment do
end

end

Next let’s count the number of “recently” created accounts; in this case,
“recently” means “in the past twenty-four hours.” We can do this with a
straightforward ActiveRecord query.

monitoring/task_and_query/lib/tasks/monitor.rake
namespace :nagios do

desc "Nagios monitor for recent accounts"
task :accounts => :environment do

recent = Account.where("created_at > ?", 1.day.ago).count
end

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cbdepra/code/monitoring/task_only/lib/tasks/monitor.rake
http://media.pragprog.com/titles/cbdepra/code/monitoring/task_and_query/lib/tasks/monitor.rake
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

end

In this plugin, we’ll ask for a warning if we get more than fifty new accounts
in a day, and we’ll consider it critical if we get more than ninety in a day.

monitoring/lib/tasks/monitor.rake
namespace :nagios do
desc "Nagios monitor for recent accounts"
task :accounts => :environment do

recent = Account.where("created_at > ?", 1.day.ago).count
msg, exit_code = if recent > 90

["CRITICAL", 2]
elsif recent > 50

["WARNING", 1]
else

["OK", 0]
end
puts "ACCOUNTS #{msg} - #{recent} accounts created in the past day"
exit exit_code

end
end

We have the Rake task in MassiveApp’s codebase now; next up, we need
Nagios to be able to run it. We can do this with a simple Bash script. We’ll
name this script check_recent_accounts and put our nagios Puppet module in mod-
ules/nagios/files/plugins/ alongside our check_passenger plugin. That script needs to
run our Rake task using the --silent flag to prevent the usual “(in /path/to/the/app)”
Rake output message since that would confuse Nagios. It also needs to relay
the exit code from the Rake task on to Nagios. We can do that using the Bash
special parameter $?, which holds the exit code of the last command executed.

monitoring/modules/nagios/files/check_recent_accounts
#!/bin/bash
cd /var/massiveapp/current/
RAILS_ENV=production /usr/bin/rake --silent nagios:accounts
exit $?

Switching back into Puppet mind-set, we’ll add another file resource to our
nagios::client class that will move our script into place.

monitoring/check_recent_accounts.pp
"/usr/lib/nagios/plugins/check_recent_accounts":

source => "puppet:///modules/nagios/plugins/check_recent_accounts",
owner => nagios,
group => nagios,
mode => 755;

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cbdepra/code/monitoring/lib/tasks/monitor.rake
http://media.pragprog.com/titles/cbdepra/code/monitoring/modules/nagios/files/check_recent_accounts
http://media.pragprog.com/titles/cbdepra/code/monitoring/check_recent_accounts.pp
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

And as with check_passenger, we’ll want to ensure the package is installed before
attempting to copy our script into place. (See Figure 4, Ensure the package
is installed, on page 8)

We’ll also need to add the new command to nrpe.cfg.

command[check_recent_accounts]=/usr/lib/nagios/plugins/check_recent_accounts

Let’s run Puppet to get the script and the new nrpe.cfg in place. We can get
into the console and add a few test accounts just to get data to work with.

app $./script/rails console production
Loading production environment (Rails 3.2.2)
ruby-1.9.3-p194 :001 >\
70.times {|i| Account.create!(:email => "test#{i}@example.com") }; nil

Now we can execute a trial run of this plugin in the same way that we’ve
exercised other plugins; we’ll just run it from the shell.

app $ /usr/lib/nagios/plugins/check_recent_accounts
ACCOUNTS WARNING - 70 accounts created in the past day

We need to tell Nagios about our new check, so we’ll add it to commands.cfg.

monitoring/commands.cfg
define command {

command_name check_recent_accounts
command_line /usr/lib/nagios/plugins/check_recent_accounts

}

And we’ll add this to our app checks:

monitoring/nagios-service-definitions
define service {

use generic-service
service_description Recent Accounts
host_name app
check_command check_nrpe_1arg!check_recent_accounts

}

Another Puppet run, and everything is in place; now Nagios will let us know
if (or when) we get a mad rush of new users.

This is the sort of check that needs to be run only once for MassiveApp. That
is, when MassiveApp grows to encompass a few servers, we won’t run this on
each server as we’d do with check_ssh and check_passenger. Instead, we’d designate
one host to run this check and to alert us if the thresholds were exceeded.

• Click HERE to purchase this book now. discuss

Monitoring Applications • 7

http://media.pragprog.com/titles/cbdepra/code/monitoring/commands.cfg
http://media.pragprog.com/titles/cbdepra/code/monitoring/nagios-service-definitions
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

package {
["nagios-nrpe-server","nagios-plugins"]:

ensure => present,
before => [File["/etc/nagios/nrpe.cfg"],\
File["/usr/lib/nagios/plugins/check_recent_accounts"],\
File["/usr/lib/nagios/plugins/check_passenger"]]

}

Figure 4—Ensure the package is installed

6.7 Where to Go Next

This whirlwind tour of Nagios has hit on the high points, but there are some
interesting areas for future investigation. The ones we think are important
are learning more about notifications and escalations, further exploring the
standard Nagios interface, and selecting the appropriate Nagios tools and
services to meet the needs of your system.

Notifications and Escalations

Nagios allows for a variety of notification mechanisms and strategies; SMS
and email are built in, but plugins are available for notifying via IRC, Twitter,
Campfire, and more. We can also set up per-person notification schedules so
that a particular person doesn’t receive notifications on their regular day off
or receives only critical notifications for critical hosts on that day. Using
contacts, hosts, and hostgroups to tune notifications can prevent everyone
from seeing and eventually ignoring too many notifications.

If a notification is sent and not handled within a certain time period, Nagios
can then escalate that notification to another group. An initial notification
might go to a help-desk support group, and if the problem persists, another
notification can be sent to a sysadmin group. Nagios has serviceescalation and
hostescalation objects to help manage the escalation schedules and strategies.

One system failing can cause others to fail and result in an avalanche of
notifications. We can manage this by setting up dependencies so that if one
system drops offline, Nagios will suppress the messaging for dependent ser-
vices. Nagios allows for both host and service dependencies to further throttle
messaging as needed. And in a pinch, we can even disable messaging sys-
temwide if something has gone terribly wrong.

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

Exploring the Standard Nagios Interface

We touched on a few areas of the built-in Nagios interface, but there’s a lot
more to see there. It includes pages that provide a topological map of the
monitored hosts, it has an interface that enables access via a Wireless Markup
Language client, and it even includes a (somewhat gratuitous) Virtual Reality
Markup Language view. More practically, there are pages showing event his-
tograms, a history of all notifications, histories of all log entries, and the
ability to view event trends over time. It also allows for planned downtime
windows to be created that will suppress notifications during that time. So,
although the Nagios interface sometimes appears a bit dated, there’s a lot of
functionality there.

For those who want enhancements to the standard interface, there are several
tools (NagVis, NDOUtils, exfoliation, NagiosGraph, and more) that can supply
different views into the data that Nagios collects. Several of these enhance-
ments show additional data; for example, NagiosGraph can display a timeline
of the performance reported by each Nagios check.

Nagios Ecosystem

Nagios has a rich ecosystem of options to meet various needs. For example,
connecting a central host to monitored hosts may not be the right solution
for everyone. Nagios also provides an alternative way, passive checks, that
uses the Nagios Service Check Acceptor to report checks to the central mon-
itoring server. With passive checks, the Nagios server doesn’t reach out to
agents. Instead, other processes push check results into a directory where
the server picks them up. This can work well for large installations and those
where the server doesn’t have access to the hosts that need to be monitored.

We’ve looked at a few plugins and written a simple one. But some of the plu-
gins open doors to entire new areas of functionality; for example, the check_snmp
plugin enables Simple Network Management Protocol integration. The Nagios
Exchange3 includes hundreds of ready-made plugins; it’s worth reviewing the
recent releases section occasionally to see what people are writing for Nagios.

3. http://exchange.nagios.org/

• Click HERE to purchase this book now. discuss

Where to Go Next • 9

http://exchange.nagios.org/
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

