
Extracted from:

Deploying Rails
Automate, Deploy, Scale, Maintain,

and Sleep at Night

This PDF file contains pages extracted from Deploying Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

5.1 Deploying Faster by Creating Symlinks in Bulk

Sometimes we’ll see variables defined in block form; here’s an example:

set(:deploy_to) { "/var/massiveapp/deploy/#{name}" }

Blocks are used in Capistrano for variables whose values must be lazy-loaded.
They become especially useful when you must interpolate the value of
another Capistrano variable and as a rule of thumb should always be used
whenever a reference to another Capistrano variable is made.

Let’s look at a more complex use of block variables and speed up our deploys
at the same time. As part of the default deployment process, Capistrano
symlinks certain directories in the #{deploy_to}/shared directory after updating
the application code. By default, each of these symlinks is created using a
separate call to run, which in turn creates a separate SSH connection to make
each symlink. Establishing and tearing down these SSH connections can take
some time. Using Capistrano’s block variables, though, we can replace the
symlink task with one that gives us more speed, as well as additional flexibility.

Here’s a set of variables assignments that show all the directories that need
to be cleaned up, created, or removed during a deploy. There are a lot, so if
we can avoid making a connection for each, our deploys will be much faster.

capistrano2/sample_variables.rb
set :cleanup_targets, %w(log public/system tmp)
set :release_directories, %w(log tmp)
set :release_symlinks do

{
"config/settings/#{stage}.yml" => 'config/settings.yml',
"config/database/#{stage}.yml" => 'config/memcached.yml',

}
end
set :shared_symlinks, {

'log' => 'log',
'pids' => 'tmp/pids',
'sockets' => 'tmp/sockets',
'system' => 'public/system'

}

To get started, let’s redefine the deploy:symlink task. We’ll include a description,
and we’ll run this task with the same restrictions as the built-in tasks, only
on app servers.

capistrano2/lib/deploy/deploy_symlink_override.rb
namespace :deploy do

desc "Create symlinks to stage-specific configuration files and shared resources"
task :symlink, :roles => :app, :except => { :no_release => true } do

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cbdepra/code/capistrano2/sample_variables.rb
http://media.pragprog.com/titles/cbdepra/code/capistrano2/lib/deploy/deploy_symlink_override.rb
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

end
end

Now we can fill in the body of the task. We’ll iterate over the cleanup_targets
array and create a shell command to remove each of the target files/directories.

symlink_command = cleanup_targets.map { |target| \
"rm -fr #{current_path}/#{target}" }

Next we’ll do the same with the release_directories variable; it contains directories
to be re-created on each deploy.

symlink_command += release_directories.map { |directory| "mkdir -p #{directory} }

Then we build more commands from the release_symlinks variable that contains
symlinks that should be created from items in the release directory. These will
typically be stage-specific configuration files that we don’t mind checking in
to our repository. The -s flag tells the ln utility to create a symlink, and the -f
flag tells ln that if the symlink exists, it should remove and re-create it.

symlink_command += release_symlinks.map { |from, to| \
"rm -fr #{current_path}/#{to} && \
ln -sf #{current_path}/#{from} #{current_path}/#{to}" }

We build still more commands from the data in shared_symlinks. In this variable,
from is relative to shared_path, and to is relative to the current_path.

symlink_command += shared_symlinks.map { |from, to| \
"rm -fr #{current_path}/#{to} && \
ln -sf #{shared_path}/#{from} #{current_path}/#{to}" }

Finally, we concatenate all of these into a single shell command that runs all
of the directory and symlink commands at once.

run "cd #{current_path} && #{symlink_command.join(' && ')}"

Here’s the entire task that we’ve built up line by line:

capistrano2/deploy_task.rb
namespace :deploy do
desc "Create symlinks to stage-specific configuration files and shared resources"
task :symlink, :roles => :app, :except => { :no_release => true } do

symlink_command = cleanup_targets.map \
{ |target| "rm -fr #{current_path}/#{target}" }

symlink_command += release_directories.map \
{ |directory| "mkdir -p #{directory} }

symlink_command += release_symlinks.map \
{ |from, to| "rm -fr #{current_path}/#{to} && \

ln -sf #{current_path}/#{from} #{current_path}/#{to}" }
symlink_command += shared_symlinks.map \

{ |from, to| "rm -fr #{current_path}/#{to} && \

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cbdepra/code/capistrano2/deploy_task.rb
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

ln -sf #{shared_path}/#{from} #{current_path}/#{to}" }
run "cd #{current_path} && #{symlink_command.join(' && ')}"

end
end

This technique nicely separates the configuration data values from the code
that processes them, making the deployment configuration more readable.
It’s a win on both performance and clarity.

• Click HERE to purchase this book now. discuss

Deploying Faster by Creating Symlinks in Bulk • 7

http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

