
Extracted from:

Deploying Rails
Automate, Deploy, Scale, Maintain,

and Sleep at Night

This PDF file contains pages extracted from Deploying Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

2.3 Running Multiple VMs

Vagrant enables us to run multiple guest VMs on a single host. This is handy
for configuring database replication between servers, building software firewall
rules, tweaking monitoring checks, or almost anything for which it’s helpful
to have more than one host for proper testing. Let’s give it a try now; first we
need a new directory to hold our new VM.

$ mkdir ~/deployingrails/multiple_vms
$ cd ~/deployingrails/multiple_vms

Now we’ll need a Vagrantfile. The syntax to define two separate configurations
within our main configuration is to call the define method for each with a dif-
ferent name.

Vagrant::Config.run do |config|
config.vm.define :app do |app_config|
end
config.vm.define :db do |db_config|
end

end

We’ll want to set vm.name and a memory size for each VM.

Vagrant::Config.run do |config|
config.vm.define :app do |app_config|

app_config.vm.customize ["modifyvm", :id, "--name", "app", "--memory", "512"]
end
config.vm.define :db do |db_config|

db_config.vm.customize ["modifyvm", :id, "--name", "db", "--memory", "512"]
end

end

We’ll use the same box name for each VM, but we don’t need to forward port
80 to the db VM, and we need to assign each VM a separate IP address. Let’s
add these settings to complete our Vagrantfile.

vagrant/multiple_vms/Vagrantfile
Vagrant::Config.run do |config|

config.vm.define :app do |app_config|
app_config.vm.customize ["modifyvm", :id, "--name", "app", "--memory", "512"]
app_config.vm.box = "lucid64_with_ruby193"
app_config.vm.host_name = "app"
app_config.vm.forward_port 22, 2222, :auto => true
app_config.vm.forward_port 80, 4567
app_config.vm.network :hostonly, "33.33.13.37"

end
config.vm.define :db do |db_config|

db_config.vm.customize ["modifyvm", :id, "--name", "db", "--memory", "512"]
db_config.vm.box = "lucid64_with_ruby193"

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/cbdepra/code/vagrant/multiple_vms/Vagrantfile
http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

Instances Need Unique Names

If you attempt to start more than one VM with the same name (in other words, the
same modifyvm --name value), you’ll get an error along the lines of “VBoxManage: error:
Could not rename the directory.” The fix is to either choose a different instance name
for the new VM or, if the old VM is a leftover from previous efforts, just destroy the
old VM. Note that halting the old VM is not sufficient; it needs to be destroyed.

db_config.vm.host_name = "db"
db_config.vm.forward_port 22, 2222, :auto => true
db_config.vm.network :hostonly, "33.33.13.38"

end
end

Our VMs are defined, so we can start them both with vagrant up. The output
for each VM is prefixed with the particular VM’s name.

$ vagrant up
[app] Importing base box 'lucid64_with_ruby193'...
[app] Matching MAC address for NAT networking...
[app] Clearing any previously set forwarded ports...
[app] Forwarding ports...
[app] -- 22 => 2222 (adapter 1)
[app] -- 80 => 4567 (adapter 1)
[app] Creating shared folders metadata...
[app] Clearing any previously set network interfaces...
[app] Preparing network interfaces based on configuration...
[app] Running any VM customizations...
[app] Booting VM...
[app] Waiting for VM to boot. This can take a few minutes.
[app] VM booted and ready for use!
[app] Configuring and enabling network interfaces...
[app] Setting host name...
[app] Mounting shared folders...
[app] -- v-root: /vagrant
[db] Importing base box 'lucid64_with_ruby193'...
[db] Matching MAC address for NAT networking...
[db] Clearing any previously set forwarded ports...
[db] Fixed port collision for 22 => 2222. Now on port 2200.
[db] Fixed port collision for 22 => 2222. Now on port 2201.
[db] Forwarding ports...
[db] -- 22 => 2201 (adapter 1)
[db] Creating shared folders metadata...
[db] Clearing any previously set network interfaces...
[db] Preparing network interfaces based on configuration...
[db] Running any VM customizations...
[db] Booting VM...
[db] Waiting for VM to boot. This can take a few minutes.
[db] VM booted and ready for use!

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

[db] Configuring and enabling network interfaces...
[db] Setting host name...
[db] Mounting shared folders...
[db] -- v-root: /vagrant

We can connect into each VM using our usual vagrant ssh, but this time we’ll
also need to specify the VM name.

$ vagrant ssh app
Last login: Wed Dec 21 19:47:36 2011 from 10.0.2.2
app $ hostname
app
app $ exit
$ vagrant ssh db
Last login: Thu Dec 22 21:19:54 2011 from 10.0.2.2
db $ hostname
db

Generally, when we apply any Vagrant command to one VM in a multiple-VM
cluster, we need to specify the VM name. For a few commands (for example,
vagrant halt), this is optional, and we can act on all VMs by not specifying a
host name.

To verify inter-VM communications, let’s connect from db to app via ssh using
the vagrant account and a password of vagrant.

db $ ssh 33.33.13.37
The authenticity of host '33.33.13.37 (33.33.13.37)' can't be established.
RSA key fingerprint is ed:d8:51:8c:ed:37:b3:37:2a:0f:28:1f:2f:1a:52:8a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '33.33.13.37' (RSA) to the list of known hosts.
vagrant@33.33.13.37's password:
Last login: Thu Dec 22 21:19:41 2011 from 10.0.2.2
app $

Finally, we can shut down and destroy both VMs with vagrant destroy.

$ vagrant destroy --force
[db] Forcing shutdown of VM...
[db] Destroying VM and associated drives...
[app] Forcing shutdown of VM...
[app] Destroying VM and associated drives...

We used two VMs in this example, but Vagrant can handle as many VMs as
you need up to the resource limits of your computer. So, that ten-node Hadoop
cluster on your laptop is finally a reality.

• Click HERE to purchase this book now. discuss

Running Multiple VMs • 7

http://pragprog.com/titles/cbdepra
http://forums.pragprog.com/forums/cbdepra

