
Extracted from:

Learn Functional Programming with Elixir
New Foundations for a New World

This PDF file contains pages extracted from Learn Functional Programming with
Elixir, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Learn Functional Programming with Elixir
New Foundations for a New World

Ulisses Almeida

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series editor: Bruce A. Tate
Copy Editor: Candace Cunningham, Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-245-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Creating Anonymous Functions
You can think of functions as subprograms of your program. They receive an
input, do some computation, and then return an output. The function body
is where we write expressions to do a computation. The last expression value
in the function body is the function’s output. Functions are useful for reusing
expressions. Let’s start with a simple example in which we’ll build messages
to say hello to Ana, John, and the world. Try typing this in your IEx:

iex> "Hello, Mary!"
"Hello, Mary!"
iex> "Hello, John!"
"Hello, John!"
iex> "Hello, World!"
"Hello, World!"

If we want to say hello to Alice and Mike, we could copy and paste the message
and replace the names. But instead we can create a function to make it easier
to say hello to anything we want. First, we need to identify the things that
change in the messages. In the preceding example, we can see that the only
thing that changes is the name of the person or group we want to say hello
to. We can write an expression that separates the name from the message.
Try it:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

iex> name = "Alice"
iex> "Hello, " <> name <> "!"
"Hello, Alice!"

We created the name variable that represents something that can change.
Then we used the <> operator to join the strings with the name variable. To
transform these expressions into a function, we transform the name variable
in a parameter and the string concatenation in a function body. Let’s take a
look at the function-creation syntax. Try it in your IEx:

iex> hello = fn name -> "Hello, " <> name <> "!" end
iex> hello.("Ana")
"Hello, Ana!"
iex> hello.("John")
"Hello, John!"
iex> hello.("World")
"Hello, World!"

We created a function and bound it to a variable called hello. Then we invoked
that using the dot operator and passing values inside the parentheses. We
can invoke that function with different values in the argument. These types
of functions are called anonymous functions in Elixir because they have no
global name and must be bound to a variable to be reused. They are useful
for creating functions on the fly. (They are also known as lambdas and are
the only type of function in lambda calculus.)

Now let’s go step by step through how we have defined the function:

1. The fn indicates the beginning of the function.

2. The name is the function’s parameter. A function’s parameters are internal
function variables that force whoever is invoking the function to supply
them with values. When calling a function we need to pass the values in
the same order the parameters were defined.

3. We have the -> operator, which indicates the following expression will be
the body of a function clause.

4. The function body is the expression "Hello, " <> name<> "!". The return value
is the value of the last expression. In this example, there’s only one
expression, so the value of that expression will be returned.

5. The end marks the end of the function definition.

Elixir gives developers the power of redefining some of the language’s basic
functions and blocks by using metaprogramming. However, the fn and end
combination is an Elixir special form. Special forms are basic building blocks
that cannot be overridden by the developer. They’ll always work in the same

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

way no matter the framework or library that you’re using in your application.
You can see more details about special forms in Elixir’s documentation.4

You can replace the <> operator with Elixir’s expressive string-interpolation
syntax:

iex> hello = fn name -> "Hello, #{name}!" end
iex> hello.("Ana")
"Hello, Ana!"

All the expressions inside of the brackets in the #{} code will be evaluated
and coerced to a string. Here’s an example:

iex> "1 + 1 = #{1+1}"
"1 + 1 = 2"

We commonly use anonymous functions for simple operations, and most of
them will be on one line. But we can create them with multiple lines; just
break the line after the -> operator:

iex> greet = fn name ->
...> greetings = "Hello, #{name}"
...> "#{greetings}! Enjoy your stay."
...> end
#Function<6.99386804/1 in :erl_eval.expr/5>

We can also create functions without arguments. We just need to omit them:

iex> one_plus_one = fn -> 1 + 1 end
iex> one_plus_one.()
2

We can create functions with multiple arguments, too, by separating them
with commas:

iex> total_price = fn price, quantity -> price * quantity end
iex> total_price.(5, 6)
30

We’ve used commas to separate the parameters price and quantity. Elixir has a
limit of 255 parameters in a function. That’s enough for any application.
However, it’s good maintenance practice to keep the number of parameters
below five. A higher number of parameters can be a good indication that you
need a data structure—tuples, lists, structs, or maps—or you need to split
your function into smaller ones.

4. https://hexdocs.pm/elixir/Kernel.SpecialForms.html

• Click HERE to purchase this book now. discuss

Creating Anonymous Functions • 7

https://hexdocs.pm/elixir/Kernel.SpecialForms.html
http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

Functions as First-Class Citizens
The first time I read the term first-class citizens, I found it funny because I
imagined a bunch of functions flying first class to Europe. But it means the
opposite. When we say in programming that functions are first-class citizens,
we mean that they are like any other value. It’s an important feature that
came from lambda calculus.

In Elixir, functions are values of type function. Let’s build a function that expects
a function:

iex> total_price = fn price, fee -> price + fee.(price) end

The function total_price receives two arguments; one is a number that will rep-
resent the price. The fee parameter expects a function. We’ll call the given
function, passing the price. The final result of the function is the result of the
price plus the result of the fee function. Now, let’s build some fee functions:

iex> flat_fee = fn price -> 5 end
iex> proportional_fee = fn price -> price * 0.12 end

Now we can try these functions all together:

iex> total_price.(1000, flat_fee)
1005
iex> total_price.(1000, proportional_fee)
1120.0

We first call the total_price function, passing the flat_fee, and then we call total_price
another time, passing the proportional_fee function. In this example, we have
passed a function in an argument like any other value. Functions are the
actions in the program. Passing or returning actions in functions is what
makes functional programming so different from imperative programming.
We’ll explore it more in Chapter 5, Using Higher-Order Functions, on page ?.

Sharing Values Without Using Arguments
We can share values with functions using closures. A closure has access to
variable values both inside and outside of the code block. In Elixir we can
create an anonymous function and pass it a code block with the values of
the variables that were defined outside of it. It’s useful to be able to share
values with functions when you can’t control the functions’ invocation, since
you can’t pass values to functions’ parameters. You can’t control function
calls specially when you use functions that take other functions as arguments.
For example, we can use Elixir’s spawn to start a process and execute a function
asynchronously. The spawn will invoke the given function asynchronously,

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

and we can’t pass arguments to it. One way to share values with that function
is by taking advantage of the closure:

iex> message = "Hello, World!"
iex> say_hello = fn -> Process.sleep(1000); IO.puts(message) end
iex> spawn(say_hello)
"Hello, World!"

The function say_hello remembered the value of the message variable and printed
the message on the console using IO.puts after one second using Process.sleep.
We used the printing and sleeping commands on the same line using the
semicolon. (The commands are named functions, and we’ll see these types of
functions in detail in the next section.) We have shared values with say_hello
without using arguments. This is possible because closures remember all the
free variables that were referenced in the lexical scope in which they were
created. Free variables? Lexical scope? Let’s see what these terms mean.

Hey, We Have a Side Effect Here

In this section, we used a say_hello function. It calls IO.puts, displaying a message in
our console session. The console and our program are different entities. When a
function interacts with anything that is external, it’s vulnerable to external problems.
We say that function has side effects; it’s impure. We’ll discuss pure and impure
functions in detail in Chapter 7, Handling Impure Functions, on page ?.

A scope is a part of a program—a code block, for example. The lexical scope
is related to the visibility of the variables in the code where they were defined.
When you use a variable in a function definition, the compiler will analyze
your code reading upwards and will bind the variable to the closest definition.
Everything defined before and outside of a function’s scope is the upward
scope. Try this example:

iex> answer = 42
iex> make_answer = fn -> other_answer = 88 + answer end
iex> make_answer.()
130
iex> other_answer
** (CompileError) iex:4: undefined function other_answer/0
iex> answer = 0
iex> make_answer.()
130

The function make_answer references the variable answer; the compiler will go to
the upward scope and find the answer definition. When we try to call other_answer
outside of the function’s scope, the program will generate an error. That’s

• Click HERE to purchase this book now. discuss

Creating Anonymous Functions • 9

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

because other_answer exists only inside of the make_answer function’s scope, not
outside of it. It’s like a one-way mirror: the inner scope can see the variables
outside, but not vice versa.

Also note the unaffected make_answer result after we assign a new value to
answer. When we define a function referencing a variable outside of the func-
tion’s scope, we bind the current value and it will be immutable. That’s why
when answer has a new value, it doesn’t affect the make_answer function’s result.

The following diagram illustrates how scopes work. The white box is the scope
of the IEx shell, while the gray box is the scope of the anonymous function
make_answer.

answer = 42

make_answer =

make_answer.()

fn -> other_answer = 88 + answer end

Scope 1

Scope 2

We can see each code block has his own space. The next diagram shows that
each code block we create has a space that the code outside can’t see into.
But the code inside the space can see the variables defined outside and refer-
ence them. The gray shading color of the variable indicates that variable is
not visible by the scope. The following diagram shows each scope’s variable
visibility:

answer

make_answer

other_answer

Scope 1

Scope 2
answer

other_answer

Scope 1

Scope 2

make_answer

The outer scope can’t see the variables defined inside of the anonymous
function. The anonymous function can only see the variables defined before
its own definition. That’s why the anonymous function can’t see the make_answer
variable: it was defined after the function-creation expression.

With an understanding of how lexical scope works, we can now discuss free
and bound variables. Inside of a function, a variable is bound when it is

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

defined as a function’s parameter or a local variable in a function’s body;
otherwise, it’s free. Let’s test the closure:

iex> product_price = 200
iex> quantity = 2
iex> calculate = fn quantity -> product_price * quantity end
iex> calculate.(4)
800

We’ve defined the variable quantity, but the function calculate has a parameter
with the same name. This means the variable is bound, and its value will not
be remembered. product_price is free, but it doesn’t exist in the calculate parameter
although it’s referenced in the body. Therefore, the product_price value will be
remembered no matter where the execution happens. The following diagram
illustrates the scopes’ definitions:

product_price = 120
quantity = 30

calculate =

calculate.(12)

fn quantity -> product_price * quantity end

Scope 1

Scope 2

We can see the variables’ visibility on each scope:

product_price

quantity

calculate

quantity

Scope 1

Scope 2
product_price

quantity

Scope 1

Scope 2

quantity

We can clearly see now that the quantity parameter defined in the inner scope
has higher precedence than the variable with the same name defined in the
outer scope. The outer variable quantity is shadowed by the quantity parameter
in the calculate function. Variable shadowing isn’t good practice because it
creates confusion about the variable’s value, generating code that is hard to
understand. Avoid this! That’s how closures work in Elixir: we can share
values with functions without using arguments.

• Click HERE to purchase this book now. discuss

Creating Anonymous Functions • 11

http://pragprog.com/titles/cdc-elixir
http://forums.pragprog.com/forums/cdc-elixir

