
Extracted from:

Rails for .NET Developers

This PDF file contains pages extracted from Rails for .NET Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 6

CRUD with ActiveRecord
ActiveRecord is the part of Rails that’s responsible for talking with the

database of our application. Whether that database is MySQL, SQL

Server, SQLite, Postgres, or one of the myriad of other RDBMSs that

Rails supports, ActiveRecord allows us to tell it what to do in a single

language, Ruby.

In this chapter, we’ll explore the sweet spot of Rails—the creating, read-

ing, updating, and deleting (CRUD) of data—using ActiveRecord. We’ve

already talked about some of the conventions that we’ll need to follow

to take full advantage of ActiveRecord; now, we’ll put this knowledge to

the test by using Rails to do a lot of the same things we’re used to doing

in .NET. In addition, we’ll be concentrating much more on the capabil-

ities of ActiveRecord and the model side of things and only minimally

on the controller and view parts of the Rails world. We’ll take a much

closer look at the controller and view in the next chapter.

6.1 Displaying a Grid of Data in a Table

One of the features that you’ll see in almost any web application is

a collection of records in a database displayed in a human-readable

grid/table format. Let’s say we’d like display a simple table that shows

all passengers in our flight system from our passengers table.

How You Might Approach It in .NET

There’s no built-in ActiveRecord-like ORM mapper in .NET, although

several open source and commercial packages are similar in style and

function. For the most part, though, in out-of-the-box ASP.NET Web-

Forms, you’re looking at SQL (whether it’s in a stored procedure or

dropping a SQL statement into code) or LINQ in order to get an object

DISPLAYING A GRID OF DATA IN A TABLE 103

that contains your data and then displaying it with a control like the

GridView. The following illustrates such an approach:

.NET Download crud/Passengers.aspx

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs"

Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Passengers</title>

</head>

<body>

<form id="form1" runat="server">

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConnectionString="<%$ ConnectionStrings:ConnectionString %>"

SelectCommand="SELECT * FROM passengers"></asp:SqlDataSource>

<asp:GridView ID="GridView1" runat="server"

AutoGenerateColumns="False" DataKeyNames="id"

DataSourceID="SqlDataSource1">

<Columns>

<asp:BoundField DataField="name" HeaderText="name"

SortExpression="name" />

<asp:BoundField DataField="address" HeaderText="address"

SortExpression="address" />

<asp:BoundField DataField="seating_preference"

HeaderText="seating_preference"

SortExpression="seating_preference" />

</Columns>

</asp:GridView>

</form>

</body>

</html>

Here, we create a simple GridView that contains our data by binding

the control to a SqlDataSource object that queries for all passengers.

Within the GridView definition, we declaratively let the control know

which columns we want to display. When we start our application up,

this code will translate into HTML for display in the web browser.

The Rails Way

It’s pretty trivial to create the same interface using Rails’ scaffolding,

as we did in the previous chapter. But we’re going to do everything by

hand this time so we can dig a little deeper into how Rails works behind

the scenes.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/crud/Passengers.aspx
http://www.pragprog.com/titles/cerailn

DISPLAYING A GRID OF DATA IN A TABLE 104

As we’ve already learned, three parts are involved in building the same

read-only view of a data collection as the ASP.NET GridView approach:

the model, the view, and the controller. Let’s quickly use a generator to

get all the files we need before exploring our application further.

c:\dev\flight> ruby script\generate resource passenger

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/passengers

exists test/functional/

exists test/unit/

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/passenger.rb

create test/unit/passenger_test.rb

create test/fixtures/passengers.yml

exists db/migrate

create db/migrate/20080722201710_create_passengers.rb

create app/controllers/passengers_controller.rb

create test/functional/passengers_controller_test.rb

create app/helpers/passengers_helper.rb

route map.resources :passengers

Now that we have the files we need, let’s make a few edits to the gener-

ated code to get our application working the way we want it.

The Passenger Model

We’ll concentrate on the model layer first. Notice that the generator

created a migration file, db/migrate/20080722201710_create_passengers.rb.

Let’s modify this migration to reflect the schema we’d like to create for

the passengers table, where each passenger will have a name, address,

and seat preference.

Ruby Download crud/20080722201710_create_passengers.rb

class CreatePassengers < ActiveRecord::Migration

def self.up

create_table :passengers do |t|

t.string :name, :address, :seat_preference

t.timestamps

end

end

def self.down

drop_table :passengers

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/crud/20080722201710_create_passengers.rb
http://www.pragprog.com/titles/cerailn

DISPLAYING A GRID OF DATA IN A TABLE 105

Now we’ll run the migration:

c:\dev\flight> rake db:migrate

(in c:\dev\flight)

== 20080722201710 CreatePassengers: migrating =======

-- create_table(:passengers)

-> 0.0026s

== 20080722201710 CreatePassengers: migrated (0.0029s) =====

Great. The passengers table is now created based on the information

we’ve provided in the migration file. With no SQL. Just Ruby.

The Rails Console

Now that we’ve created our table, it’s a good time to mention that Rails

ships with a handy utility called console that is a lot like irb, except

that it runs within the context of our web application. This means that,

in addition to evaluating Ruby interactively, you can also do things

like manipulate your application’s database, make simulated requests,

and execute other Rails-specific commands that wouldn’t otherwise be

available with vanilla irb. Let’s fire it up now:

c:\dev\flight> ruby script\console

Loading development environment (Rails 2.1.0)

>>

From the console, we’re able to learn a lot about the capabilities of the

ActiveRecord library. Let’s use it now to create some sample records in

our passengers table:

>> Passenger.create(:name => 'John Doe', :address => '123 Main St',

:seat_preference => 'Aisle')

=> #<Passenger id: 1, name: "John Doe", address: "123 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 15:49:24">

The create method is a class method of the class Passenger that accepts

a single parameter—a Hash where the keys are column names (as sym-

bols) and the corresponding values. We could just easily do it the long

way and instantiate a new Passenger object, assign the values we’d like,

and call the save method:

>> passenger = Passenger.new

=> #<Passenger id: nil, name: nil, address: nil, seat_preference:

nil, created_at: nil, updated_at: nil>

>> passenger.name = 'Jane Doe'

=> "Jane Doe"

>> passenger.address = '123 Main St'

=> "123 Main St"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

DISPLAYING A GRID OF DATA IN A TABLE 106

>> passenger.seat_preference = 'Window'

=> "Window"

>> passenger.save

=> true

Both approaches yield the same result: a new record gets created in the

passengers table with the values you’ve specified for each column. Some

developers like the one-line brevity of the create method, and others

enjoy the clear intention expressed by the multiline approach. It’s up

to you to decide which of the styles you like better.

It’s Just SQL

By now, you have probably realized that ActiveRecord, as fantastic a

library as it is, is not magic. All it really does is create SQL statements

behind the scenes, with the added bonus of being completely database-

agnostic. That is, it understands the various idiosyncrasies of various

database engines and adjusts the generated SQL accordingly.

The closer your relationship with ActiveRecord, the more productive

Rails developer you’ll become. And the key to a deeper and more mean-

ingful relationship with ActiveRecord is knowing exactly what SQL is

being generated when you call methods like create. Fortunately, the

raw SQL is exposed through the log file of a running Rails application,

and furthermore, you can also examine it in the console. By default,

the log output of any commands you execute in the console go straight

to your development log (located at log\development.log), but you can

issue a one-line command to override this and direct the log output to

standard output instead. We’ll do this now so that we can inspect the

SQL that ActiveRecord creates quickly:

>> ActiveRecord::Base.logger = Logger.new(STDOUT)

=> #<Logger:0x105a608 @default_formatter=#<Logger::Formatter:0x105a5e0

@datetime_format=nil>, @progname=nil,

@logdev=#<Logger::LogDevice:0x105a590, @filename=nil,

mutex=#<Logger::LogDevice::LogDeviceMutex:0x105a52c

@mon_entering_queue=[], @mon_count=0, @mon_owner=nil,

@mon_waiting_queue=[]>, @dev=#<IO:0x2e7d4>, @shift_size=nil,

@shift_age=nil>, @level=0, @formatter=nil>

So when we create a new record, we see the underlying SQL right away:

>> passenger = Passenger.create(:name => 'Brian Eng', :address =>

'1060 West Addison', :seat_preference => 'Aisle')

Passenger Create (0.000887) INSERT INTO passengers ("name",

"updated_at", "seat_preference", "address", "created_at")

VALUES('Brian Eng', '2008-01-15 16:13:18', 'Aisle', '1060 West

Addison', '2008-01-15 16:13:18')

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

DISPLAYING A GRID OF DATA IN A TABLE 107

=> #<Passenger id: 3, name: "Brian Eng", address: "1060 West

Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:13:18", updated_at: "2008-01-15 16:13:18">

One thing to note is that when a record gets created, the created_at

and updated_at columns of the table automatically get filled in. Don’t

remember creating those columns? That’s because you didn’t. When

we used the generator to create the migration for the passengers table, it

inserts the t.timestamps line in there by default. That’s a special method

that creates the created_at and updated_at columns for us. These are

special column names that ActiveRecord recognizes and automatically

fills in for us when a row is created or updated, respectively.

Also note that the value returned from the create method is a instance

of the Passenger class, which contains the methods id, name, address,

seat_preference, created_at, and updated_at.

>> passenger.address

=> "1060 West Addison"

You might think that these methods were added in by the generator

code as well, but if you take a peek at the Passenger class, you’ll see

that’s not the case:

Ruby Download crud/passenger.rb

class Passenger < ActiveRecord::Base

end

That’s right—a completely empty class definition. ActiveRecord knows

what columns you have in your database and automatically generates

a method for each column under the covers. All you do is call it.

Now, let’s explore a few more ActiveRecord methods from the console

and see where it takes us. First we’ll find and update a single record in

the table using the find and save methods:

>> passenger = Passenger.find(1)

Passenger Load (0.000601) SELECT * FROM passengers WHERE

(passengers."id" = 1)

=> #<Passenger id: 1, name: "John Doe", address: "123 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 15:49:24">

>> passenger.address = '321 Main St'

=> "321 Main St"

>> passenger.save

Passenger Update (0.000567) UPDATE passengers SET "created_at"

= '2008-01-15 15:49:24', "name" = 'John Doe', "seat_preference"

= 'Aisle', "address" = '321 Main St', "updated_at" = '2008-01-15

16:18:31' WHERE "id" = 1

=> true

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/crud/passenger.rb
http://www.pragprog.com/titles/cerailn

DISPLAYING A GRID OF DATA IN A TABLE 108

We can also delete (destroy) a record with the destroy method:

>> Passenger.destroy(3)

Passenger Load (0.000535) SELECT * FROM passengers WHERE

(passengers."id" = 3)

Passenger Destroy (0.000573) DELETE FROM passengers

WHERE "id" = 3

=> #<Passenger id: 3, name: "Brian Eng", address: "1060 West

Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:10:34", updated_at: "2008-01-15 16:10:34">

And finally, to get all the records in the table, we’ll use the find method,

passing in the :all option:

>> Passenger.find(:all)

Passenger Load (0.000760) SELECT * FROM passengers

=> [#<Passenger id: 1, name: "John Doe", address: "123 Main St",

seat_preference: "Aisle", created_at: "2008-01-15 15:49:24",

updated_at: "2008-01-15 15:49:24">, #<Passenger id: 2, name: "Jane

Doe", address: "123 Main St", seat_preference: "Window",

created_at: "2008-01-15 15:55:35", updated_at: "2008-01-15

16:06:10">, #<Passenger id: 3, name: "Brian Eng", address: "1060

West Addison", seat_preference: "Aisle", created_at: "2008-01-15

16:10:34", updated_at: "2008-01-15 16:10:34">]

Finding a data collection like this returns an Array of Passenger objects,

which we will ultimately loop through to create our grid of data.

Creating the Controller and View for Our Grid of Data

Now that we’ve added a couple of rows to our passengers table and we

know how to get the data we want in order to display our table of pas-

sengers, let’s hook up the controller and view code.

First, in the controller, we’re going to add a method for the index action:

Ruby Download crud/passengers_controller.rb

class PassengersController < ApplicationController

def index

@passengers = Passenger.find(:all)

end

end

In the index action, we’ve defined an instance variable called @passengers

that holds an Array of Passenger objects corresponding to all the records

of the passengers table. Any instance variables we define in the controller

are available for use in the rendered view, which by convention is the

view file with the same name as the action located in the subdirectory

named after the controller.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/crud/passengers_controller.rb
http://www.pragprog.com/titles/cerailn

DISPLAYING A GRID OF DATA IN A TABLE 109

In this case, it’s app/views/passengers/index.html.erb.

Ruby Download crud/index.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Showing All Passengers</title>

</head>

<body>

<table border="1" cellspacing="5" cellpadding="5">

<tr>

<th>Passenger Name</th>

<th>Address</th>

<th>Seat Preference</th>

</tr>

<% @passengers.each do |passenger| %>

<tr>

<td><%= passenger.name %></td>

<td><%= passenger.address %></td>

<td><%= passenger.seat_preference %></td>

</tr>

<% end %>

</table>

</body>

</html>

Fire up your server using the script/server command, hop over to your

browser, and you should see something like what’s in Figure 6.1, on

the next page.

Rails is definitely a bit “closer to metal” than ASP.NET WebForms. In-

stead of writing a SQL statement, dropping a control on a page, and

letting the framework write the HTML for us, we’re writing the HTML

ourselves instead, delegating only the most granular data-driven details

to the framework. This gives us the ultimate fine-grained control over

the final output from the very beginning.

As shown by this example, Rails—unlike ASP.NET—doesn’t really have

the concept of GUI controls that you’d use to build a web form. Your

only GUI “toolbox” in Rails is that of the native languages of the Web—

HTML, JavaScript, and CSS.

A view, like this one, is simply HTML with some Ruby intermingled

in there—otherwise known as Embedded Ruby (ERb). Here, we have

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/crud/index.html.erb
http://www.pragprog.com/titles/cerailn

SORTING, FILTERING, AND PAGING DATA 110

Figure 6.1: Showing a table of all passengers

a basic HTML page with markup for the table of passengers we want

to display. Any Ruby code between the <% %> symbols is going to be

interpreted at runtime. So, we’re dynamically looping through the con-

tents of the @passengersArray and creating a table row for each record.

Within each tr tag, we have three columns represented by the td tags,

and within each td tag, we’re again calling on Ruby to give back a value.

When Ruby code lives within <%= %> tags, we’re asking Ruby to actu-

ally write the result of the code within the tags out to the resulting

HTML, instead of simply running the code. From an HTML generation

perspective, Rails is similar in style and spirit to traditional ASP.

6.2 Sorting, Filtering, and Paging Data

Now that we can view our data using a simple HTML table, it’s time

to move on creating more interesting views of that data. For a very

small data set, the previous example would work just fine. Most likely,

however, we will be working with larger and more complex sets of data

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Rails for .NET Developers’ Home Page

http://pragprog.com/titles/cerailn

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cerailn.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/cerailn
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cerailn
www.pragprog.com/catalog

	Rails in Action
	CRUD with ActiveRecord
	Displaying a Grid of Data in a Table
	Sorting, Filtering, and Paging Data

