
Extracted from:

Rails for .NET Developers

This PDF file contains pages extracted from Rails for .NET Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 24

1.6 Instant Gratification—Your First Rails App

The best way to “get it” when starting out with Rails is to just go for it by

building a simple application and playing around with its capabilities.

In this section, that is exactly what we’ll do. We’ll build a basic applica-

tion that’s going to help us keep track of all the books (yes, paper!) in

our library.

We’re going to write almost the entire application using just a few simple

commands. You’ll have to see it to believe it, so let’s fire up a command

prompt, cd to where you’d like your application to live (we’ve chosen

the C:\dev directory), and create a new Rails application:

C:\dev> rails book_tracker

C:\dev> cd book_tracker

The rails command results in the default Rails directory structure being

created. Like File > New Project in Visual Studio, it creates a shell of an

application for us. Let’s go ahead and list the directory contents to see

exactly what was created:

C:\> dir

app

components

config

db

doc

lib

log

public

script

test

tmp

vendor

We’ll go into the Rails directory structure in further detail later, but for

now, let’s focus on the two directories where we’ll likely spend the most

time. The app directory contains all your main application code, broken

down into four subfolders: controllers, helpers, models, and views. And the

config directory contains our application’s configuration. Among other

things, this application configuration describes how we’ll connect to our

database.

Once we’ve created the Rails project, it’s time for some Rails magic.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 25

Scaffolding—An App in One Line

Scaffolding, in Rails terms, is a lot like real-world scaffolding—it is boil-

erplate code to help keep our application in place while we’re build-

ing the real production-quality code behind it. We can put it up very

quickly, and when we’re done, we should tear it down so that it doesn’t

get in the way. Let’s put the scaffolding up now:

C:\dev\book_tracker> ruby script/generate scaffold book title:string

author:string on_loan:boolean

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/books

exists app/views/layouts/

exists test/functional/

exists test/unit/

create app/views/books/index.html.erb

create app/views/books/show.html.erb

create app/views/books/new.html.erb

create app/views/books/edit.html.erb

create app/views/layouts/books.html.erb

create public/stylesheets/scaffold.css

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/book.rb

create test/unit/book_test.rb

create test/fixtures/books.yml

create db/migrate

create db/migrate/20080722191828_create_books.rb

create app/controllers/books_controller.rb

create test/functional/books_controller_test.rb

create app/helpers/books_helper.rb

route map.resources :books

The generate command, in its simplest form, takes two parameters, the

first being what you’d like to generate—in this case a scaffold—and the

second being the name of the new class. By convention, the scaffold

generator expects the singular form of the resource you’re trying to

create, so we’ve passed in the singular book argument to the command.

In addition, we’ve also told the generator about what fields a book has.

We’ve told it that each book will have two string fields, title and author,

and a boolean field that indicates whether we’ve lent that book to a

friend.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 26

All the scaffold generator command (or any generator command, for

that matter) does is create a bunch of files for us. We could have created

these files ourselves, but this is a whole lot easier! We’ll get into what

all these files are for in a moment, but for now, let’s concentrate on the

db/migrate/20080722191828_create_books.rb file. This file is what’s known

as a migration.

Versioning the Database with Migrations

A migration is a Ruby script that uses a very simple domain-specific lan-

guage (DSL) for manipulating databases. As .NET developers, we might

be accustomed to inventing our own ways of creating and versioning

database schemas. If we were developing an app with .NET and SQL

Server, a simple example might go something like this:

1. When developing the first cut of your application, create an initial

database creation script by using SQL or by using a graphical tool

such as SQL Management Studio and then dumping the schema

to a text file.

2. While developing, make changes to the database schema through

a similar process—using various SQL scripts—sharing throughout

with team members so they can keep up-to-date.

3. After our application is deployed to staging or production envi-

ronments, use additional SQL scripts we’ve created to keep the

database schemas on your development environment in sync with

these other environments in our IT infrastructure.

Migrations are simply the Rails way of doing the same thing. Except

that instead of using SQL, it’s all written in Ruby. This approach has a

couple of benefits:

• Since our app and database manipulation are all written in the

same language, there’s very little context switching or deep knowl-

edge about database-specific intricacies necessary to be success-

ful building your app.

• Rails does all the low-level SQL for you, and it is completely

platform-agostic. We can easily switch from MySQL to Postgres

to SQL Server if we want and even have a different database plat-

form per environment. Imagine developing on a Mac with SQLite 3,

staging to a Linux box with MySQL, and deploying to a Windows

server with SQL Server for production (not that we recommend

this, but doing so would be trivial).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 27

Let’s open db/migrate/20080722191828_create_books.rb and take a peek at

what a migration looks like:

Ruby Download instant/20080722191828_create_books.rb

class CreateBooks < ActiveRecord::Migration

def self.up

create_table :books do |t|

t.string :title

t.string :author

t.boolean :on_loan

t.timestamps

end

end

def self.down

drop_table :books

end

end

The fields we passed as parameters to the scaffold generator command

are already in this migration file. We are free to modify them in any way

at this point; the actual changes to the database schema have not been

made yet.

The name of the file is crucial—well, at least the number at the begin-

ning is. This is a time stamp of when the migration was created, and

it represents the database version. As we add more migrations to our

application, that number will increase; that’s how Rails knows the order

in which to execute them.

A migration class has two methods: self.up and self.down. The self.up

method tells Rails what to do when migrating up; likewise, the self.down

method gets executed when rolling the database back.

Remember, the generate command creates a bunch of files—nothing

else. The actual database manipulation doesn’t take place until we exe-

cute the migration file. Let’s do that now:

C:\dev\book_tracker> rake db:migrate

(in c:/dev/book_tracker)

== 20080722191828 CreateBooks: migrating ==============================

-- create_table(:books)

-> 0.2267s

== 20080722191828 CreateBooks: migrated (0.2269s) =====================

rake is Ruby’s automation and task-running utility (more about rake in

Chapter 12, Finishing Touches, on page 234), and we’ve just used it

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/instant/20080722191828_create_books.rb
http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 28

to run the db:migrate task, thus creating our books table. Wait, where?

Remember that, unless you specify otherwise, Rails will use the SQLite

3 engine for its development and test databases by default. If you now

list the contents of the db directory, you’ll see that your development

database (the development.sqlite3 file) has just been created.

Fire It Up

Believe it or not, a complete application that we can use to maintain

our book collection is now ready to use! But first, we’ll want to start

up WEBrick, the lightweight web server that comes with the default

Rails installation.11 WEBrick is the Rails equivalent of Web Developer

Server for us ASP.NET devs—it’s a technology that lets us run our app

locally while developing. And, like Web Developer Server, we access it

via localhost on a high-numbered port that doesn’t interfere with other

services on our machine. WEBrick starts up on port 3000 by default:

C:\dev\book_tracker> ruby script\server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

Head over to http://localhost:3000 using your web browser of choice. You

should see the standard Rails welcome screen, as shown in Figure 1.1,

on the following page. Now, simply add the name of the resource you’re

interested in—in this case books—to the end of that URL so that you end

up with http://localhost:3000/books. Then you can marvel at what you’ve

accomplished with one simple command.

As you browse, you’ll find that everything you need to create, update,

read, and delete books has been automatically generated for you. Not

only is the application perfectly usable, but the code that’s been gener-

ated is a great starting point for understanding how a Rails application

is supposed to be built.

Time to Tweak

OK, that was easy. Let’s take it a step further now. Let’s say we’d now

like to capture the date on which each book was purchased.

11. If you have the mongrel gem installed, it will be used instead of WEBrick.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 29

Figure 1.1: Rails welcome screen

Thanks to migrations, adding the field to the database is easy. Simply

generate a new migration with this command:

ruby script\generate migration add_purchased_on_to_books

exists db/migrate

create db/migrate/20080722191930_add_purchased_on_to_books.rb

This will create a new migration file at db/migrate/20080722191930_add_

purchased_on_to_books.rb. Now we’ll add code to the self.up method to

indicate what should happen when we upgrade from the current ver-

sion (version 20080722191828) to the next version (version 20080722-

191930—as indicated by the first part of the migration’s filename). And,

we’ll also add code to the self.down method in case we ever want to roll

back to the previous version.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 30

Joe Asks. . .

How Do I Roll Back My Database to a Previous Version?

Migrations can also be undone:

C:\dev\book_tracker> rake db:rollback

In addition, the rake task used to migrate up also accepts an
optional parameter with the target version. For example, the
following command would also migrate the database back to
version 20080722191828:

C:\dev\book_tracker> rake db:migrate VERSION=20080722191828

Ruby Download instant/20080722191930_add_purchased_on_to_books.rb

class AddPurchasedOnToBooks < ActiveRecord::Migration

def self.up

add_column :books, :purchased_on, :date

end

def self.down

remove_column :books, :purchased_on

end

end

Now, we’ll execute the migration:

C:\dev\book_tracker> rake db:migrate

(in C:/dev/book_tracker)

== 20080722191930 AddPurchasedOnToBooks: migrating ====================

-- add_column(:books, :purchased_on, :date)

-> 0.0470s

== 20080722191930 AddPurchasedOnToBooks: migrated (0.0470s) ===========

Now that we’ve added the new field to the database, the last step is to

add the new field to the pages used to create, edit, and display books.

Open app/views/new.html.erb, and you’ll notice that the scaffolding cre-

ated code that generates text fields for the title and author fields, as

well as a checkbox for the “on loan” flag. The methods text_field and

check_box in this code are known as form helpers. These helper meth-

ods tell Rails to show text input and checkbox input HTML tags, respec-

tively, when the page is rendered. Since we’ve added a date column to

the database, we could use a text input field if we wanted, but in most

cases, the date_select helper method to display the date input using

three drop-down boxes is a more attractive choice.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/instant/20080722191930_add_purchased_on_to_books.rb
http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 31

Ruby Download instant/new.html.erb

<h1>New book</h1>

<%= error_messages_for :book %>

<% form_for(@book) do |f| %>

<p>

Title

<%= f.text_field :title %>

</p>

<p>

Author

<%= f.text_field :author %>

</p>

<p>

On loan

<%= f.check_box :on_loan %>

</p>

<p>

<%= f.submit "Create" %>

</p>

<% end %>

<%= link_to 'Back', books_path %>

Head on over to http://localhost:3000/books again, and give it a try. Upon

visiting the “create book” page, you should see something similar to

what’s shown in Figure 1.2, on the next page. Using the same tech-

nique, you should also go ahead and enhance app/views/new.html.erb in

the same way.

More One-Liners—Validating Input

As we’ve seen so far, Rails is the king of the one-liners. These simple

commands represent a lot of the little things you need to turn your app

from a set of simple forms into a full-blown web application.

Try to create a new book with no title and no author. You’ll find that

there’s no validation preventing that from happening. Luckily, there’s

an easy way to fix that. Open app/models/book.rb, and add a new line of

code, just after the class definition:

Ruby Download instant/book.rb

class Book < ActiveRecord::Base

validates_presence_of :title, :author

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/instant/new.html.erb
http://media.pragprog.com/titles/cerailn/code/instant/book.rb
http://www.pragprog.com/titles/cerailn

INSTANT GRATIFICATION—YOUR FIRST RAILS APP 32

Figure 1.2: Creating a book with a “Purchased On” date

Try to create a new book with no title or author one more time. Voila!

Now Rails catches that error and displays an appropriate error message

on the page.

In this chapter, we’ve gotten a solid Rails development stack installed,

and we’ve seen how easy it is to get a simple application up and run-

ning. We’ve already built a real application that talks to a database,

learned how to do basic database versioning, and even done some sim-

ple form validation. That’s not bad for just a few lines of code.

We also built it all without the help of an IDE, which is probably differ-

ent from what you’re used to, if you’ve been living in the .NET world for

a while.

You’re now prepared to go a lot deeper into the anatomy of a Rails

application and understand how the Ruby language plays a big part in

what makes Rails what it is.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Rails for .NET Developers’ Home Page

http://pragprog.com/titles/cerailn

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cerailn.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/cerailn
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cerailn
www.pragprog.com/catalog

	Hello, Rails
	Getting Started with Rails
	Instant Gratification---Your First Rails App

