
Extracted from:

Rails for .NET Developers

This PDF file contains pages extracted from Rails for .NET Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

USING LAYOUTS INSTEAD OF MASTER PAGES 163

<%= f.collection_select :origin, airports, :code, :city, {},

{ :size => 10 } %>

Other Data-Bound Controls

The form_for block object can help build other controls as well:

• check_box binds a checkbox to a boolean attribute.

• password_field binds a textbox to a string attribute but masks the

input.

• hidden_field creates a hidden value that will be sent to the applica-

tion when the form is submitted.

• radio_button binds a radio button to a model attribute. Multiple

radio buttons for the same attribute are considered to be a radio

button group.

• text_area is similar to text_field but allows multiple lines of input.

Each of these helper methods “bind” HTML controls to data columns

simply because they’ll use generate the proper name values in the re-

sulting HTML code. Your create or update actions in your controller per-

form the heavy lifting by calling the create or update_attributes method

on your ActiveRecord model.

We’ve toured the basics of creating forms in Rails. The following sec-

tions will take us into two other aspects of view management in Rails:

layouts that help us provide a consistent look and feel among all of our

pages; and partials, which will help us avoid repeating the same code

from one view to the next.

8.2 Using Layouts Instead of Master Pages

ASP.NET 2.0 introduced the concept of master pages so that site-wide

logic and HTML can be applied across all pages that share the same

structure and layout.

In Rails, we use layouts to apply a common HTML structure to our

entire application or for specific controllers. Since layouts in Rails are

normal view templates that can contain embedded Ruby code, lay-

outs provide one way for us to dynamically “theme” our site. We can

determine styles and page structure dynamically based on environ-

ment settings, user profiles, configuration files, time of day, data in

our database, or anything else we can dream of.

Layouts also serve a second purpose. Ruby developers like to keep their

code DRY. Refactoring reduces the number of lines of application code,

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

USING LAYOUTS INSTEAD OF MASTER PAGES 164

isolates faulty code to a single spot so that a fix can be performed in

just one place, and helps maintain readable code as the size of the

application grows larger. We want to treat our view templates as first-

class code citizens in our application and strive to keep our view code

as DRY as possible as well. Layouts help us refactor common code out

of our views so that we don’t need to repeat the same code in each view

template.

Master Pages in ASP.NET

Master pages help enforce a standard structure or layout for every page

on the site. Master pages have the file extension .master and use a @

Master directive instead of the usual @ Page. This placeholder would be

replaced at runtime with the content of the current page.

Master pages are similar to regular .aspx files, but at some point in the

code there must be a ContentPlaceHolder control. As its name suggests,

the placeholder is replaced at runtime by an actual .aspx page, wrapped

by the outer master layout. The page being wrapped is often referred to

as the content page.

Connecting a content page with its master page involves setting the

MasterPageFile property in the content page’s @ Page directive. We usu-

ally do this from the Add Item Wizard in Visual Studio, but it can also

be done by hand later. And although they are similar to regular .aspx

pages, content pages do not contain HTML tags such as <html>, <body>,

or even <form>.

The motivation behind master pages is to help ease the development

of sites where pages share a common layout so that the common ele-

ments can be specified once in the master page. Changes to the com-

mon structure can be done in the master page, and all pages that use

that master page will automatically use the new structure. At runtime,

ASP.NET will merge the content page into the surrounding master page.

Rails also provides a mechanism for sharing common structure among

pages by introducing the notion of a layout template. If you’ve been

using master pages in your ASP.NET projects, using layouts will feel

natural and easier to use than master pages.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

USING LAYOUTS INSTEAD OF MASTER PAGES 165

Using Layouts in Rails

Layouts differ from master pages in a few ways:

• Layouts are either controller-wide or site-wide.

• Instead of a “placeholder” tag in the template, layouts use the

Ruby keyword yield.

• Views are automatically merged into the controller or site-wide

layout. No separate step is needed to connect a view to its layout.

Layouts are normal embedded Ruby templates to generate HTML, with

a twist. Layouts will be “wrapped around” your more specific, action-

based view templates. The layout combines with an action-specific tem-

plate to generate the complete HTML for a web page. Using layout files

is entirely optional, but most projects benefit from using even simple

layouts.

You can incorporate layouts into your views in three ways:

• A controller-specific layout will automatically be used if it exists.

Each controller can contribute a file into the app/views/layouts/

directory if it follows the specific naming convention of controller.

html.erb. For example, app/views/layouts/flights.html.erb is the lay-

out template that will wrap around all templates served by the

FlightsController.

• A site-wide default layout will be used if a controller-specific lay-

out does not exist. The site-wide layout file must be named appli-

cation.html.erb. If the site-wide layout and a controller layout both

exist, the controller layout takes priority. This means you can

define a site-wide layout but override it for specific controllers as

needed.

• Specify the layout file in your controller’s Ruby code. You can

explicitly call the layout class method in your controller to define

the layout file you’d like to use for your controller:

class FlightsController < ApplicationController

Use app/views/layout/my_special_layout

for every action rendered by this controller

layout "my_special_layout"

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cerailn

USING LAYOUTS INSTEAD OF MASTER PAGES 166

If needed, you can override the layout setting for a specific action:

class FlightsController < ApplicationController

Use app/views/layouts/my_special_layout.html.erb

only for the index action.

All other actions will use flights.html.erb

or application.html.erb if they exist

layout "my_special_layout", :only => :index

end

or if you choose, specify the layout during an explicit render call:

class FlightsController < ApplicationController

def index

render index.html.erb wrapped by

app/views/layouts/my_special_layout.html.erb

render :action => :index, :layout => 'my_special_layout'

end

end

Let’s see how we can put layouts to practical use.

Using Layouts for Controller-wide Themes

Layout templates are just like normal action view templates, but they

wrap their contents around action view templates. When no specific

layout directive is found in the controller code, the controller-specific

layout found in the app/views/layouts directory will automatically wrap

around every action rendered by that controller.

Inside the layout, you decide exactly where the action template’s code

is to be inserted by calling yield, as shown in the flights.html.erb layout.

Ruby Download view/layouts/flights.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html;charset=UTF-8" />

<title>Flights: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/view/layouts/flights.html.erb
http://www.pragprog.com/titles/cerailn

USING LAYOUTS INSTEAD OF MASTER PAGES 167

<%= yield %>

</body>

</html>

We can modify the output rendering of every action from the FlightsCon-

troller by enhancing this template. Let’s add a nice header and footer to

our views:

Ruby Download view/layouts/flights_enhanced.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html;charset=UTF-8" />

<title>Flights: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<h1 id="flights">Flight Administration</h1>

<p style="color: green"><%= flash[:notice] %></p>

<div id="action">

<%= yield %>

</div>

</body>

</html>

We will now tweak the scaffold.css code a bit:

Download view/layouts/scaffold.css

#header { border-bottom: solid 2px green; padding: 20px;}

#action { margin-left: 100px;}

To see the layout wrap around every action of the FlightsController, go to

http://localhost:3000/flights, and use the scaffold-generated pages. You’ll

see that all the pages automatically inherit the same heading and mar-

gin styles because they are now rendered from within the layout.

Creating a Site-wide Layout

Often we want to enforce a site-wide structural layout. A site-wide lay-

out is implemented by simply naming the template application.html.erb.

Rails refers to this file as the application layout, and Rails will use it for

every controller that does not specify its own layout.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/view/layouts/flights_enhanced.html.erb
http://media.pragprog.com/titles/cerailn/code/view/layouts/scaffold.css
http://www.pragprog.com/titles/cerailn

CREATING PARTIALS INSTEAD OF USER CONTROLS 168

To demonstrate, let’s convert our newly made flights layout into a site-

wide, or application, layout:

1. Rename flights.html.erb to application.html.erb in the app/views/layouts

directory.

2. Edit the title tag as desired, and let’s change the h1 tag as well:

Ruby Download view/layouts/application.html.erb

<h1 id="header">Airline Management App</h1>

3. Delete the existing controller-specific layouts.

Now, every page will be rendered with our site-wide layout.

Controllers can override the site-wide layout, but you can’t have it both

ways: actions can be wrapped by their controller’s layout or the appli-

cation layout, but not both.

8.3 Creating Partials Instead of User Controls

Websites are often composed of common elements. We have already

seen how layouts help promote a common structure without needlessly

repeating code inside each view template and how layouts can be seen

as a kind of equivalent to .NET master pages. Although layouts are

useful for providing overall structure and “wrapper” content, we often

want to reuse small components or self-contained sections across many

pages. .NET provides this facility with user controls, which help encap-

sulate appearance and behavior together as a unit. In this section, we

will explore partials, which is another facility provided by Rails to help

us reuse small sections or “components” of a web page in other pages

as well.

User Controls in ASP.NET

User controls and server controls are powerful features of ASP.NET.

They provide several important benefits to ASP.NET projects that use

them:

• They help encapsulate often-used UI and behavior in one place.

• They help factor common functionality from individual pages.

• They can be derived from DataBoundControl to bind the control’s

UI to the database.

• They can inherit from other user controls, leveraging existing code

and again helping reduce code redundancy.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cerailn/code/view/layouts/application.html.erb
http://www.pragprog.com/titles/cerailn

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Rails for .NET Developers’ Home Page

http://pragprog.com/titles/cerailn

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cerailn.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/cerailn
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cerailn
www.pragprog.com/catalog

	Rails in Action
	Exploring Forms, Layouts, and Partials
	Using Layouts Instead of Master Pages
	Creating Partials Instead of User Controls

