
Extracted from:

Augmented Reality
A Practical Guide

This PDF file contains pages extracted from Augmented Reality, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 9

Enhancing Your AR Game
This chapter builds upon the game you started to build in the previous

chapter. Now that you have the basics of your game, it’s time to add

some artificial intelligence (AI) and complete the tank behaviors. The

AI of a game is often the most challenging part; even simple behaviors

require careful thought and often require a great deal of code. But it’s

also true that the element that distinguishes one game as more fun

and intriguing to play from another is often the quality of the AI. It’s

extremely difficult to program AI that is as interesting as human oppo-

nents. This book is about AR, not AI, so you will create a simple AI

system.

9.1 AI for Robot Tanks

An integral part of many video games is some quasi-intelligent behav-

ior of various game elements—usually the bad guys. This sort of AI

ranges from the ghosts in Mrs. Gobble to the worker and army units in

real-time strategy (RTS) games. Often, as in your tank game, the robot

elements need only a minimal level of intelligence. In others, such as

an RTS—or in the extreme case, a chess game—the AI is what makes

the game.

Regardless of how involved the AI is, it needs to be well thought out.

Without sufficient planning, the robot behavior can turn out to be far

different from what you expected. Also, poor planning can lead to many

ad hoc changes and “repairs” that make your code undesirable. Not to

suck the fun out of programming a video game, but game AI quickly

becomes a complex state machine, and too much interactivity between

behaviors can lead to complex feedback paths.

AI FOR ROBOT TANKS 240

Trying to fix one thing can end up causing something else in turn to

act strangely, and after a while, the programmer has to admit that she

does not understand the system she has created.

It may sound exciting to have unexpected robot behavior, but unex-

pected behavior usually means that the robot tanks just sit around,

clump together in traffic jams, or inexplicably drive through walls. Un-

expected robot behavior usually means a frustrating programming

experience—not the robots becoming self-aware.

“A problem clearly stated is a problem half solved.”

—Dorothea Brande

The more clearly you describe what you want your AI game elements to

do, the greater the chance you will end up making a system that works.

You should first plan things from a system’s viewpoint and then make

concrete plans for various parts. Obviously, you should do this before

you start coding. If there are any contradictions or undesired outcomes,

you’ll have to face them at some point, and it’s usually easier to do so

before you start coding.

There are many ways to plan your game AI behavior. Similar to a chess

game, you could examine a number of possible next moves and then

for each consider several different behaviors. Then, for each option,

examine a number of possible moves. This expands in an exponentially

growing tree of possibilities, so it is more suited to a strategy game than

your tank game.

An alternate AI system architecture is to design a set of behaviors the

agent (tank) can be doing one at a time. Since only one behavior can be

acted upon at a time, these behaviors are prioritized. A behavior is acti-

vated by some conditions—if active, each behavior suppresses behav-

iors lower on the priority list. Also, the lower priority behaviors should

somehow move the system to a state where the higher-priority behav-

iors kick in. Imagine a simplified animal behavior: avoiding a preda-

tor is an overriding behavior to finding food and water, which itself is

an overriding behavior to finding some entertainment. For example, a

wombat’s boredom behavior is quickly replaced by predator avoidance

behaviors if a hungry fox suddenly appears.

You’re going to adopt this architecture of prioritized behaviors in your

Tank Wars game. Now you have an architecture framework. The next

step is to design a set of behaviors and prioritize them.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cfar

AI FOR ROBOT TANKS 241

Let’s clarify how your tanks should behave. They should have the ability

to see opponent tanks and should try to fire shells at them. The tanks

should not be able to see through walls, but they should be able to

distinguish friend from foe. Since the missiles don’t change trajectory,

the tanks need to be able to turn and face the enemy before shooting.

Based on these points, let’s set down some behavior rules and their

priority:

Behavior #1: If a robot tank sees an enemy tank and is lined up with it,

it should launch a missile.

Behavior #2: If a robot tank sees an enemy tank, it should rotate to line

up with it.

Behavior #1 overrides behavior #2. The easy way to implement priority

is to set up an “if, else if, else” structure with the higher (lower priority

#) behaviors higher in the “if, else if, else” code. Note that you should be

careful what priority you assign to each behavior. For example, if you

put the rotate behavior first, then even if a tank had an enemy lined

up, it may rotate away to face another. Putting the firing behavior first

is logical—if the tank can take a shot, it should fire.

If you give your tanks a limited field of view—as in your game—a robot

may not see an enemy tank that is aiming in its direction. In this case,

the robot tank should do something when it gets hit by an incoming

missile; this is behavior #3.

Behavior #3: If a robot tank gets hit by a missile, it will rotate to face

the direction of the oncoming missile.

These three behaviors act in a chain reaction from low to high priority.

If a tank is minding its own business and a missile suddenly hits it,

behavior #3 activates, and it turns to face the threat; perhaps it should

run away, but that’s more complex. Once the tank rotates far enough

to see the enemy tank that fired, behavior #2 kicks in, and it keeps

rotating to line up with the aggressor (which may be a different angle,

if the enemy has moved since it fired the original missile). Once a tank

has its turret lined up with the enemy, behavior #1 activates, and it

fires. The first few stages in the next section will help you implement

these three behaviors.

You can simplify the situation by having the first three behaviors hap-

pen when the tank is not moving, so let’s declare that the tank will

brake if it’s moving and wants to perform behavior #1, #2, or #3.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cfar

AI FOR ROBOT TANKS 242

So far, you have basically added the behavior of a gun turret, so now

you will add some motion. What should a tank do if not immediately

in a battle (behaviors #1–#3)? A logical behavior would be to go help

another tank on its team, but how do you define help? Remember that

you don’t want to directly battle the enemies with his lower-priority

behavior; you only want this behavior to bring about a situation that

invokes the higher-priority behaviors—the ones responsible for battle.

With this in mind, let’s define helping a fellow tank that is in a battle:

Behavior D: A robot tank will drive to the (X, Y) coordinates of a team

member that currently sees an enemy.

Note the switch from numbered behaviors to letters; you’re going to

renumber the ones with letters later in this chapter. Also note that you

don’t need to preface the behavior rule by “If a robot is just sitting

around doing nothing, then...” because this is implicit in our priority

architecture.

You can imagine that these behaviors could still result in some strange

results. The default behavior—if conditions don’t trigger behaviors #1

to #3 or D—is to sit still. This means the game can get stuck in a

state where all tanks are just sitting still in different parts of the map.

Therefore, you will add patrolling as the final behavior. If none of the

tanks on a team is in battle, then they’ll all drive around until one finds

an enemy. This will trigger behavior D, and the rest of the tanks will

roll over.

Patrolling, like helping, is a vague concept, so you need to clarify it into a

simple and precise behavior. In Tank Wars, you’ll implement searching

by picking a semirandom destination in the map and driving toward

it. Specifically, you’ll have a list of waypoints for each team, and each

“bored” tank will pull a waypoint off the list and navigate to it. The next

bored tank will pull the next waypoint off the list. The list of waypoints

will be chosen so that the tanks fan out; this will stop them from all

driving to the same location.

Behavior E: A robot tank will pick a waypoint off a list—according to a

variable specific to the robot’s team—and will navigate to the waypoint.

The variable will then be incremented so that the next bored robot picks

a different destination.

Note that behaviors D and E both involve navigating around the map

while avoiding walls. Thus, you need some path planning. This will

cause you to subdivide these behaviors, but let’s leave that out for now.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 243

You now have a behavior priority tree with five behaviors identified

(behaviors #1, #2, #3, D, and E). Next, you’ll see behaviors #1, #2,

and #3 implemented, and then you’ll address the path planning for

behaviors D and E.

9.2 Vision for Robot Tanks

If a robot tank can see an enemy, behaviors #1 and #2 require process-

ing to determine the angle of the enemy tank. You want to have some

realism in that a tank cannot see through the walls, so you’ll add some

tunnel vision to give them a limited field of view; this will allow other

tanks to sneak up on them.

How are you going to achieve this robotic tank vision? You aren’t going

to try a full simulation and render an image from the tank’s viewpoint

and process this image for enemy tanks. However, this would be a good

project for a computer vision researcher and may not be intractable if

you identify the presence of tanks by color. Since you already have all

the data for the robot tanks’ positions, you can cut some corners and

simulate the same effect.

In this section, you’re not going to implement any behaviors; you’re just

going to add the vision system. Let’s start by breaking down the vision

system into more precise terms.

A robot tank A sees an enemy tank B if B’s location in polar coordinates

—centered on A—is within Θ of the direction A is facing (where Θ is half

the field of view of tank A) and where there are no wall elements on the

line segment between tank A and tank B.

The vision system is going to provide two outputs: a Boolean flag

enemy_seen and a floating-point relative angle enemy_delta_angle. The

angle tells you how many degrees to turn to face the enemy. The angle

enemy_delta_angle is positive if the enemy tank is located clockwise from

the friendly tank. Remember that you have defined clockwise as posi-

tive. If multiple enemy tanks are visible, enemy_delta_angle is the small-

est angle of the angle to all enemies. After all, you want the tank to try

to fire at the one it can hit first. If this angle is below a threshold, then

the Boolean variable enemy_lined_up will be true; this tells you it’s OK

to fire a shell.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 244

Here are the DEFINE statements related to tank properties. You’re adding

the ones for visibility:

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

#define SHOTS_PER_TANK 3

#define MISSILE_SPEED 8.0

//give tanks 120 degree field of view in front

#define TANK_FOV 120

#define HALF_TANK_FOV TANK_FOV/2.0

//shoot if enemy is with 5 degrees of straight ahead

#define TANK_ALIGNED 5

Here are the new elements in the tank_s structure:

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

struct tank_s

{

//current position

float x,y,z,angle;

//last position

float last_x,last_y,last_z,last_angle;

//translational and rotational velocity

float velocity,dangle;

//reset all movement requests

bool move_cw,move_ccw,move_fast,move_slow,move_fire;

//physics setting for this tank

float max_rot_rate,max_speed;

//status and actions

//true=AI controlled, false=user controlled

bool robot;

int team;

int damage;

//true=active, false=destroyed

bool status;

//true for one time tick after collision with wall or missile

bool crash;

//missile info

bool request_fire;

//time in frames since tank last fired

int reload_time;

int time_to_reload; //reload time setting

//info on incoming missiles that recently hit tank

bool recently_hit; //true if tank has been hit

float hit_angle;

//vision system input

bool enemy_seen;

float enemy_delta_angle;

//enemy tank is lined up, ready to fire a missile

bool enemy_lined_up;

};

struct tank_s tank[NUM_TANKS];

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 245

Before you forget, initialize these booleans to false so that when you

institute behaviors #1 and #2, the robot tanks don’t misfire a missile

as the game begins. As a conscientious tank commander, you want to

avoid collateral damage.

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

for(int tank_num=0;tank_num<NUM_TANKS;tank_num++) {

tank[tank_num].dangle=0.0;

//tank "performance" settings

tank[tank_num].max_rot_rate=15.0; tank[tank_num].max_speed=5.0;

//initial status and action settings

//set all tanks to manual control

tank[tank_num].robot=false;

tank[tank_num].team=tank_num/5; tank[tank_num].status=true;

tank[tank_num].crash=false; tank[tank_num].move_fire=false;

tank[tank_num].damage=10;

//reset all movement requests

tank[tank_num].move_cw=false; tank[tank_num].move_ccw=false;

tank[tank_num].move_fast=false; tank[tank_num].move_slow=false;

tank[tank_num].request_fire=false;

//missile related struct elements

//time in frames since tank last fired

tank[tank_num].reload_time=0;

//reload time setting

tank[tank_num].time_to_reload=4;

//indicates if tank has recently been hit

tank[tank_num].recently_hit=false;

//robot tank AI

tank[tank_num].enemy_seen=false; tank[tank_num].enemy_lined_up=false;

}

You’re going to put all the AI code into a new function called game_

engine_ai(), which you will call before game_engine_physics(). This new

function is called from opengl_tick(); here is a code fragment with a sin-

gle new line:

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

//update game

game_engine_ai();

game_engine_physics();

glutPostRedisplay();

And finally, here is the vision system implemented in game_engine_ai().

A double nested loop goes through all combinations of tanks. The outer

loop goes through values of tank_num_a where A is the tank you’re cur-

rently processing the vision for, and the inner loop goes through values

of tank_num_b where B is the (potential) enemy tank.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 246

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

void game_engine_ai(void)

{

//vision for tanks

for(int tank_num_a=0;tank_num_a<NUM_TANKS;tank_num_a++)

if(tank[tank_num_a].status) {

tank[tank_num_a].enemy_seen=false; tank[tank_num_a].enemy_lined_up=false;

tank[tank_num_a].enemy_delta_angle=HALF_TANK_FOV;

for(int tank_num_b=0;tank_num_b<NUM_TANKS;tank_num_b++)

if((tank_num_a!=tank_num_b)&&(tank[tank_num_a].team!=tank[tank_num_b].team)

//only consider alive tanks on different team

&&(tank[tank_num_b].status)) {

float dx=tank[tank_num_b].x-tank[tank_num_a].x;

float dy=tank[tank_num_b].y-tank[tank_num_a].y;

float heading=get_angle(dx,dy); //angle of B w.r.t A

float heading_diff=heading-tank[tank_num_a].angle;

if(heading_diff>180.0) heading_diff-=360.0;

if(heading_diff<-180.0) heading_diff+=360.0;

if(fabs(heading_diff)<HALF_TANK_FOV) {

//an enemy tank B does satisfy the angle criteria

//see if tank B is in line of sight

bool line_blocked=check_line_of_sight(tank[tank_num_a].x,tank[tank_num_a].y,

tank[tank_num_b].x,tank[tank_num_b].y);

if((fabs(heading_diff)<fabs(tank[tank_num_a].enemy_delta_angle))

&&(line_blocked==false)) {

//enemy tank is visible, and is closest in angle so far

//of all tanks checked

tank[tank_num_a].enemy_delta_angle=heading_diff;

tank[tank_num_a].enemy_seen=true;

//see if tank B is within sights to fire missile

if(fabs(heading_diff)<TANK_ALIGNED)

tank[tank_num_a].enemy_lined_up=true;

}

}

}

}

}

In this code, you used a function called check_line_of_sight(x0, y0, x1, y1)

to determine whether the line segment between tank A (assumed to

be at x0, y0) and B (assumed to be at x1, y1) crosses a map square

containing a wall.

This was put into a separate function because you’re going to need this

functionality later in your path planning.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 247

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

//see if a line segment crossed a "wall" square in the map

//check_line_of_sight() returns true if line segment does cross wall

bool check_line_of_sight(float x0, float y0, float x1, float y1)

{

float dx=x1-x0;

float dy=y1-y0;

float distance=(float)sqrt(dx*dx+dy*dy);

bool obstacle_in_way=false;

float step_x=5.0*dx/distance,step_y=5.0*dy/distance;

//send a text particle along trajectory to see if

//it lands in a wall square

float test_x=x0;

float test_y=y0;

for(float d=0.0;(d<=distance)&&(obstacle_in_way==false);d+=5.0)

{

int xm,ym; //map coordinates

//convert from world coordinates (in tank struct)

//to map coordinates

//using Eqn. 2 in chapter 9

xm=(int)(0.1*test_x);

ym=(int)(0.1*test_y);

//check map image for wall square

if(texmap[(xm+ym*MAP_WIDTH)*3]>50)

obstacle_in_way=true;

test_x+=step_x; test_y+=step_y;

}

return obstacle_in_way;

}

Since you are not yet implementing the behavior rules, you need some

way to see whether your visibility code is working. To perform the test,

you’ll simply enlarge a tank depending on the Boolean flags enemy_seen

and enemy_lined_up. If the former is true, the tank will be enlarged to

150%, and if the latter is true, it will be enlarged by 200%. Here is the

code to do this temporary visualization:

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

//--------adjust tank pose and render--------

//save modelview matrix for next iteration

glPushMatrix();

//convert from world coords to marker coords.

//Eqn. 1 in chapter 9

xa=0.5*tank[tank_num].x-80.0; ya=0.5*tank[tank_num].y-80.0;

glTranslatef(xa,ya,0.0);

glRotatef(tank[tank_num].angle,0,0,1);

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 248

//start temporary code for twars_7_vision to

//demonstrate vision engine

if(tank[tank_num].enemy_lined_up) glScalef(2.0,2.0,2.0);

else if(tank[tank_num].enemy_seen) glScalef(1.5,1.5,1.5);

//end temporary code for twars_7_vision to

//demonstrate vision engine

meshman_render_opengl(model_num,1,0);

glPopMatrix();

}

Figure 9.1, on the next page, shows the green tank enlarging to show

that it has detected an enemy tank and is lined up with it (that is, ready

to fire a missile). This causes the green tank to change from 100% to

150% and then to 200% of its normal size. The green tank starts at

100% in the top image; in the middle image, an enemy blue tank is in

sight but not lined up, so the green tank is 150% of its normal size. In

the bottom image, an enemy tank is visible and it’s in the green tank’s

gun sights, so the green tank is 200% of its original size.

Here is the function get_angle(). You called this function in game_

engine_ai() to turn an X and Y position into an angle (in degrees). This

functionality will be needed several more times in the coming sections.

As with other functions, the function is put at the top to avoid a func-

tion prototype.

Download YourARGame/Tank Wars Projects/twars_7_vision/twars_7_vision.cpp

float get_angle(double x,double y)

{

if(x!=0.0)

{

if(y>0.0) return atan2(y,x)*180.0/M_PI;

else return 360.0 + atan2(y,x)*180.0/M_PI;

}

else

{

if(y<0.0) return 270.0;

else return 90.0;

}

}

Now that you know it works, you’ll remove the expanding tank visual-

ization code in the next step.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cfar/code/YourARGame/Tankunhbox voidb@x penalty @M Warsunhbox voidb@x penalty @M Projects/twars_7_vision/twars_7_vision.cpp
http://www.pragprog.com/titles/cfar

VISION FOR ROBOT TANKS 249

Figure 9.1: The green tank changes size as it detects an enemy blue

tank.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cfar

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Augmented Reality’s Home Page

http://pragprog.com/titles/cfar

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cfar.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/cfar
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cfar
www.pragprog.com/catalog

	Contents
	About Augmented Reality
	What Is Augmented Reality?
	The Origins
	Magic Lens vs. Magic Mirror
	Marker vs. Markerless AR
	Examples of Applied AR

	Getting AR Running
	Augmented Reality Setup
	More ARTag Demos
	Diagnosing Issues with the AR Demos

	Computer Graphics Basics
	The Pinhole Model
	Transferring 3D Points Between Coordinate Systems
	Transferring Points Using Matrix Math
	The Rendering Pipeline
	Viewing Frustum and Clipping Planes
	Scan-Line Converting Polygons
	Summary of Rendering Procedure

	Using OpenGL with Augmented Reality
	About OpenGL
	Basic OpenGL Demo
	Compiling for Windows
	Compiling for Linux
	Compiling for Mac OS X
	The OpenGL Template Program
	Setting the Frustum
	Translate Rotate Scale
	The Matrix Stack
	Motion Example Program
	Other Graphics Primitives: Polygons and Triangle Strips
	Rendering with Pointers
	Rendering with Indices
	The OpenGL glDrawElements Function

	Introduction to AR Programming
	AR Development Setup
	A Note About Textures and OpenCV
	Compiling AR Projects for Linux
	Compiling ARTag Projects
	Revisiting Demo Customization
	Configuring Your Camera
	ARTag Marker Format

	Writing Applications for ARTag
	Introduction to ARTag Applications
	ARTag Functions
	Using ARTag Functions
	Getting the ARTag SDK
	Camera Input to Your Program
	Basic OpenGL Program Running with ARTag
	Motion and Multiple Array Objects
	Initializing and Terminating AR Applications
	Detecting Markers
	Setting Virtual Camera Viewpoint
	Finding Marker Array Size
	Mapping Between Objects
	Mapping from Objects to the Image
	Creating Marker Patterns
	Miscellaneous Functions
	Performance Issues
	Scale Issues with Array Dimensions
	Automatically Sizing Augmentations to Array Size
	Using artag_project_between_objects

	Model Loading and Rendering
	A Textured Polyhedral Model
	OBJ File Format: Sneak Peek
	Reorganizing a Model for Single Indices
	More About OpenGL's glDrawElements
	The OBJ File Format
	highgui: Reading JPEG, BMP, and TGA Textures
	VRML Files
	Using ARTag's Mesh Manager
	Conclusions

	Your Own AR Game
	Basic ARTag OpenGL AR Program
	Add Some Walls to Make a Maze
	Add a Keyboard-Controlled Tank
	Multiple Tanks, Simple Animations, and the Request-Simulate Architecture
	Preventing Tanks from Driving Through Walls
	Add Flying Missiles
	Summary

	Enhancing Your AR Game
	AI for Robot Tanks
	Vision for Robot Tanks
	Behavior #1: Firing a Missile
	Behavior #2: Rotating to Face the Enemy
	Behavior #3: Responding to Attack
	Moving Tanks
	Behavior #4: Moving Agents: Getting from Point A to B
	Path Planning
	Behavior #6: Patrolling
	Behavior #5: Helping
	Complete Tank Wars
	Conclusions to Tank Wars
	Expanding Tank Wars

	How Does ARTag Work?
	The ARTag Marker System
	When to Use ARTag
	Fiducial Marker Systems
	Comparing Fiducial Marker Systems
	ARTag Markers Using Arrays
	Further Reading on ARTag

	Troubleshooting
	General Issues
	Webcam Issues
	ARTag Issues
	ARTag Development Issues
	Linux Issues
	OpenCV Issues

	Acknowledgments
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

