Extracted from:

You Never Knew JavaScript Could Do This!

This PDF file contains pages extracted from Prototype and script.aculo.us, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,
please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.
Copyright © 2008The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

2.1

Furious activity is no substitute for understanding.
» H. H. Williams

Chapter 2

This part provides in-depth coverage of Prototype, which is the Java-
Script library at the core of this book. Prototype is a very dense library:
although rather small (at about 120KB raw, less than 30KB gzipped, it
is no huge framework), it is replete with features, helper objects, and
nifty tools, arranged in a reasonably consistent set.

But before we go ahead, we need to answer a few questions and tackle
the more involved subjects with a clear mind and proper expectations.
For example, what's Prototype exactly? What should we expect it to
do for us? What kind of lingo may we need to learn? And apparently
it relies on...well, prototypes, so what are JavaScript prototypes in
the first place? So, I'll start with explaining all this quickly; you will
then be armed with everything necessary to fully leverage the following
chapters.

What Is Prototype, and What Is It Not?

Prototype is a JavaScript library designed to improve the browser’s
JavaScript environment; it extends DOM elements and built-in types
with useful methods, has built-in support for class-style OOP (includ-
ing inheritance), advanced support for event management, and power -
ful Ajax features.

Prototype is not a complete application development framework: it does
not provide widgets or a full set of standard algorithms, I/O systems, or
what have you. It stands in this middle ground between down-and-dirty
manual coding of everything and full-fledged frameworks with their
countless objects. Most massive frameworks do indeed use Prototype
internally and build upon it.

USING PROTOTYPE IN OUR PROJECT d 24

Note, however, that there is a more visual-oriented library working
closely with Prototype called script.aculo.us; we’ll explore it in the sec-
ond part of this book.

Although inspired by the Ruby programming language, Prototype is not
attached to any server-side technology. True, it stems from the Ruby
on Rails universe, but it is a stand-alone spin-off. It is indeed very easy
to use Prototype when coding with Ruby on Rails, but the library can
be used with no difficulty over any back end, such as PHP, J2EE, or
ASP.NET. It is very successfully used in production for projects with all
these technologies and more.

Prototype is distributed as a single file called prototype.js, currently
weighing about 120KB (before any sort of packing or gzipping). Despite
this relative litheness, it provides a large set of features, most of which
interoperate in an intuitive way.

2.2 Using Prototype in Our Project

So, how do we go about enabling Prototype in a web page? It is really
quite simple: we just need to load prototype.js, and loading it first will
let us leverage its power in any other scripts we have. This loading is
best done with a simple <script> element in the <head> of our page:

<head>

<script type="text/javascript" src=".../prototype.js"></script>
</head>
Where Can We Get Prototype?

The official website is the authoritative source for the latest public ver-
sion of Prototype and also provides detailed, up-to-date API documenta-
tion with plenty of examples, tutorial-style articles, and a blog updated
by the Prototype Core team. It’s located at http://prototypejs.org.

2.3 What Does Our JavaScript Look Like When Using Prototype?

Good question. To make a long story short, it looks darn good. It looks
nifty. It looks smart. It looks Rubyesque. JavaScript is fun again. But
don’t take my word for it—see for yourself. Let’s look at a simple exam-
ple and then at a more involved, combined demo that will help you
understand just how easy Prototype coding is.

http://prototypejs.org
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 25

A Note About Versions

This book covers Prototype 1.6. To understand how Prototype
evolved, and where it's headed, it's worth looking at a short
history.

The release of version 1.5, on January 18, 2007, was a major
event for people using only the public versions. They had
been stuck with 1.4 for a year, and 1.5 brought about a
tfremendous amount of improvements and new features.

These days, Prototype is rapidly pacing ahead, moving in
swifter, shorter steps. Version 1.5.1 was released in April 2007
and brought a few new features and significant refactor-
ing and cleanup of the code base. Version 1.5.1.1, a bug-
fix release with a few nice surgical improvements to boot,
was released in June. With a first release candidate in early
August 2007 and a final release scheduled in October 2007,
version 1.6 is a major step ahead. It infroduces a complete
overhaul of the event system, the first improvements on sub-
classing, and many more new features. Prototype Core is
considering a later 1.6.1 release with yet more event- and
class-related improvements, and then we’ll be done with
the 1.x branch. The next steps will take us to 2.0. And we’re
hard at work on it already!

The information in this book is current at the time we‘re about
to go 1o press. This means by the fime this book is out, you're
at worst one or two months behind; in other words, you‘re
up-to-date on 95% of the library and have only to peruse
the recent items in the change log to be on the very top of
things.

You can get additional information on later releases and
feature updates on the book’'s website and blog at:
thebungeebook.net.

thebungeebook.net
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 26

An important note: the code in the following two examples is intention-
ally heavy on Prototype “magic,” which means it might use advanced
syntaxes and concepts that you may not—yet—be familiar with. Fear
not, however: this was done to let you feel the might of properly lever-
aging what Prototype has to offer you, and we’ll dive together, in detail,
into these capabilities and syntaxes in the following chapters. If some of
the code is unclear as you go through this chapter, I'm confident you’ll
be able to come back and squeeze every ounce of meaning out of it once
you're through the Prototype part of the book. In the meantime, I did
try to lace the text with enough explanations that you can grab the idea
and general dynamics of the code.

A Simple Example: Playing with People

Er, this sounds like an invitation to use pyramid scams on unsuspect-
ing strangers. Actually, I just suggest we put together a simple class
representing a person, then start spawning a few people with it, and
finally fiddle with the resulting population to extract a few pieces of
information. We’ll do all of it the Prototype way.

I bet you could use some code before deciding whether what I just said
made any sense. So, let’s create an empty folder, put Prototype’s profo-
type.js in it (version 1.5.1 or later), and write the following bench page
for us to play in:

Download prototype/intro/basic/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtm11/DTD/xhtm1l-strict.dtd">
<htm1 xmlns="http://www.w3.0rg/1999/xhtm1" lang="en-US" xml:lang="en-US">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>A basic demo of Prototype at work</title>
<link rel="stylesheet" type="text/css" href="basic.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="basic.js"></script>
</head>
<body>

<h1>A basic demo of Prototype at work</hl>
<div id="result"></div>

</body>
</html>

The <div> with id="result" is just a placeholder for our upcoming script
to spew HTML into.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/index.html
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 27

Now, let’s create this basic.js we referenced and write a Person class. In
Prototype, we would do it this way:

Download prototype/intro/basic/basic.js

line1 var Person = Class.create({
initialize: function(first, last, city, country) {
this.first = first;
this.last = Tlast;

5 this.city = city;
this.country = country;
}!
- getFullName: function() {
10 return (this.first + ' ' + this.last).strip(Q;
}!

getDisplayName: function() {
var result = this.getFullName();
15 if (this.city || this.country) {
result += ' (';
if (this.city) {
result += this.city;
if (this.country) result += ', ';

20 }
result += (this.country || "');
result += ') ";
}
- return result;
25 }
9N

This first fragment deserves some explanation:

* The Class.create() call on line 1 produces a Prototype class. For
the JavaScript gurus among you, yes, that is a function object.

* When using Prototype classes, initialization is taken care of via a
initialize() method, here on line 2, which receives all the arguments
passed at construction time.

¢ Finally, our getDisplayName() method, starting on line 13, builds
a variable-form string representation of the person, with the first
name and/or last name and possibly city/country information
between parentheses, all of it properly formatted and adjusted.

Being defined at the prototype level, all of these methods are basically
instance methods. We'll add a class method (or static method) that pro-
vides a comparator between two people.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 28

Just to make our code more “Prototypish” and to demonstrate neat
JavaScript usage, we’ll make it conform to the following usage syntax:

Person.compare([criterion = 'first',] pl, p2) — (-1|0]|1)

Now, that’s unusual—optional arguments appearing first! It’s actually
easy to deal with once you regard your arguments as just an array of
values, much like Ruby would allow. Here is the code:

Download prototype/intro/basic/basic.js

line1 Person.compare = function() {
var prop = 'first', args = $A(arguments);
if (args.length == 3 && typeof args[0] == 'string')
prop = args.shift(Q;
5 var cl = args[0][prop], c2 = args[1][prop];
- return (cl < c2 ? -1 : (c2<cl?1:0));
3
As you may know, functions in JavaScript get an automatic arguments
variable that holds their arguments. It’s not an array properly speaking,
but it looks like one (in other words, it features a [] operator and a
length property), so we can readily convert it to an actual array with
Prototype’s SA() utility function, as shown on line 2.

Prototype-enhanced arrays are mighty to say the least, but in this par-
ticular occasion all we need is their native shiff() method, which will
take the first element out and return it.

By simply checking whether there are three arguments instead of two,
with a String-typed first one, we know we've been called with an explicit
field name as the comparison criterion. So, we override our prop vari-
able with the first argument, which we take out of the argument list at
the same time.

Now that we have the name of the field we're going to use for compar-
ison, we need to dynamically access it for each of the two people we're
about to compare. This is trivially done in JavaScript with the square
brackets operator, [], which we use on line 5. When used on an object,
it takes an expression that evaluates to the name of a property in the
object, and it returns the value of that property.

Finally, using nested ternary operators (?:), we return -1 if the first
object looks lesser, 1 if it looks greater, and zero otherwise.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE?

It’s time we spawn a whole series of people to tinker with:
Download prototype/intro/basic/basic.js

var people = [
new Person('Jes "Canllaith"', 'Hall', 'Wellington', 'NZ'),
new Person('Sebastien', 'Gruhier', 'Carquefou', 'FR'),
new Person('Clotile', 'Michel'),
new Person('Stéphane', 'Akkaoui', 'Paris'),
new Person('Elodie', 'Jaubert', 'Paris')

1;
Notice how we do not need to pass all the arguments every time and
how the objects are constructed: through the traditional new keyword.

OK, were all set. We can now start playing with Prototype-induced
power. For instance, let’s say we need to get a sorted list of all the
first names for these people, with no risk of duplicates:

Download prototype/intro/basic/basic.js

people.pluck('first').sort().uniq(.join(C"', ")
// => 'Clotilde, Elodie, Jes "Canllaith", Sebastien, Stéphane'

Doesn’t this rock? The pluck() method fetches a given property from all
the objects in the series and returns an array of the resulting values.
unig() strips out duplicates. This is rather concise, don’t you think?

How about getting full information on all people with a defined country,
sorted by ascending country code:

Download prototype/intro/basic/basic.js

people.findAl1(function(n) { return n.country; })
.sort(Person.compare.bind(Person, 'country')).invoke('getDisplayName")

// => ['Sebastien Gruhier (Carquefou, FR)',

// 'Jes "Canllaith" Hall (Wellington, NZ)']

The findAll() method takes a predicate (a function taking an element
and returning a boolean about it) and returns all the elements that
passed it. Here, our predicate just returns each person’s country prop-
erty, whose value may very well be undefined. If it holds a nonempty
string, it will be deemed true, so the predicate will pass. Otherwise, the
predicate will fail.

Perhaps you come from a programming background with languages
that do not have higher-order functions, meaning you can use functions
as regular values to be assigned, passed around as arguments to other
functions, returned as result values, and so on.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 30

JavaScript, like many dynamic languages, has that important feature,
so we can indeed pass a function around without having to resort to
“ancient” tricks such as method pointers.

In the code we just saw, we're passing a function as an argument to
the sorf() method. This is one aspect of higher-order functions. The
function we're passing is actually the result of calling bind() on the
original Person.compare() method, which means this bind() thing, which
I'll explain shortly in a moment, actually returns a function. This is
another aspect of the language’s support for higher-order functions.

In this code, we would like to use our comparator function, except we
need to pass it with the first argument (the criterion one) prefilled. Pro-
totype’s bind() method on functions lets us do this, among other things
(and we’ll discuss it in depth in Section 4.2, Proper Function Binding,
on page 60).

Finally, the invoke() method lets us call a given method on each element
in the series returned by sort() (possibly with arguments, although we
don’t need any here) and returns an array of the resulting values. Java-
Script places no restrictions on where you can use the dot (.) operator;
as long as its left side is an object, you're in the clear. If that side is a
method call, all you need is that method call to return an object; this
lets you chain calls easily to any length you may need.

Finally, on page creation, once it is loaded and the DOM is all ready,
we want to dynamically inject a bulleted list of all the people we have
by ascending natural order (since the default value for the criterion is
the first name, we’ll get first-name ordering).

Manually creating all the required DOM nodes would be fastidious, so
we elect to build valid XHTML text and inject it safely into the proper
container. Here’s the code:

Download prototype/intro/basic/basic.js

line1 document.observe('dom:loaded', function() {
html = '\n'
+ people.sort(Person.compare).map(function(p) {

- return '\t<]i>' + p.getDisplayName().escapeHTML() + '</T1i>"';
5 }.join('\n")
- + '</uls';

$('result') .updateChtml);

$$("#result 1i:nth-child(2n)').invoke('addClassName', 'alternate');

b

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 31

Look at the map() call on line 3; this is the all-purpose transformation
method (pluck() and invoke() are special-purpose optimizations of it). We
get an array of <lIi>... text with our “display” names inside, then
join them with line delimiters, and finally wrap the whole thing in a
.... To guard us against weird characters in the people data,
we use escapeHTML() on the resulting strings, effectively “defanging”
any markup in there.

This is all just markup. To safely inject it into the DOM, we need to
grab the element with id="result", which is gracefully done with (). This
method also makes sure the element we get back is equipped with the
countless DOM extensions Prototype provides, including the mighty
update() method, that we use to inject our markup into the element’s
DOM fragment.

Notice that our whole anonymous method is passed to document.
observe(), which is part of Prototype’s unified API to event handling
(if you've ever played with events with your bare hands, you noticed,
for instance, that Internet Explorer superbly ignores most of the official
W3C specifications about it). Our method will be run when the docu-
ment’'s DOM has finished loading, which is just what we need.

Finally, the killer call is on line 8. You know these fancy CSS 3 selectors
we just can’t use because they're not all that well supported yet? Well,
we sure can use them with Prototype’s $$()! to select any set of elements
in the DOM! Then Prototype comes with CSS-tweaking methods, such
as addClassName(), that take an extra CSS class name argument, but
such methods are designed to work on the element we're calling them
on. How can we use it on all the elements $$() returned? That’'s what
invoke() is for, and using it lets us alter all matching elements concisely.
The matching CSS is very short:

Download prototype/intro/basic/basic.css

#result 1i.alternate { font-weight: bold; color: green; }
Once loaded, our page looks like Figure 2.1, on the next page.

That’s it for a first run. Excited? I hope so. Take some time to breathe.
If you're on Firefox, why not bring up a Firebug? console and play with
this script interactively? Or take a stroll. Go enjoy the company’s free
coffee. Check out the blogs.

1. Blazing fast since 1.5.1.
2. http://getfirebug.com

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.css
http://getfirebug.com
http://www.pragprog.com/titles/cppsu

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? <« 32

7T A basic demo of Prototype at work - Iceweasel
File Edit Miew History Bookmarks Tools Help

- @ (i} [0 otorypefintrojbesic/index htmi [+ [[IG:]Gc

A basic demo of Prototype at work

« Clotile Michel

Elodie Jaubert (Paris)

e Jes "Canllaith" Hall (Wellington, NZ)

» Sebastien Gruhier (Carquefou, FR)
* Stéphane Akkaoui (Paris)

Done o

Figure 2.1: Our dynamic, custom-styled content

Ready to move ahead with something more involved? Here we go.

One Good-Looking Script: A Table Sorter

To let you feel how using Prototype can lead to neat, cool JavaScript
code, we'll build a simple table sorter. As long as our (X)HTML tables
properly feature a <thead> and a <tbody>, our sorter object will be
able to sort it.

The idea is to unobtrusively bind sorter objects to <table> elements
so that the user can click the column heading and have the table
sort accordingly. Clicking a second time on the current sort heading
switches to a descending sort. We'll also use a few CSS class names so
that styling can be applied to express the current sorting status.

Our table sorter system is “simpler” insofar as it does not deal with data
types; it treats every cell as text. On the other hand, it does grab the
cell’'s whole text, regardless of internal markup.

The full source code is available online. For this example, we’ll focus on
the neat parts, but there’s very little we're leaving out anyway: support
for CSS rules, status toggling for the sort, and extra <table> elements.

Laying the Groundwork

OK, so we need an HTML page with a couple tables on it (just to show
the sorting capability is neatly wrapped into an object and we can reuse
it multiple times on the same page).

http://www.pragprog.com/titles/cppsu

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Prototype and script.aculo.us’s Home Page
http://pragprog.com/fitles/cppsu
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments in the news.

If you liked this PDF, perhaps you'd like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/fitles/cppsu.

ContoctlUs

Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog
Customer Service: orders@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragprog.com/titles/cppsu
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragmaticprogrammer.com/titles/cppsu
www.pragmaticprogrammer.com/catalog

	Contents
	Preface
	Introduction
	It's About Time
	What's in This Book, and How Is It Organized?
	Acknowledgments

	Prototype
	Discovering Prototype
	What Is Prototype, and What Is It Not?
	Using Prototype in Our Project
	What Does Our JavaScript Look Like When Using Prototype?
	Prototype Jargon and Concepts
	What Are Prototypes Anyway?
	Running Prototype Code Samples in This Book

	Quick Help with the Dollars
	Shortcuts Should Be Short
	Quick Fetching of Smart Elements with $
	$w, Because Array Literals Are Boring
	$$ Searches with Style
	$A, the Collection Unifier
	$F Is a Field Expert
	$H Makes a Hash of Things
	Handling Ranges with $R

	Regular JavaScript on Steroids
	Generic Object Manipulation
	Proper Function Binding
	Your Functions Actually Know More Tricks
	Numbers
	Strings
	Arrays
	Full-Spectrum JSON Support

	Advanced Collections with Enumerable
	The Core Method: Iterating with each
	Getting General Information About Our Collection
	Finding Elements and Applying Filters
	Grouping Elements and Pasting Collections Together
	Computing a Derived Collection or Value
	Order Now: Getting Extreme Values and Using Custom Sorts
	Turning Our Collection into an Array or Debugging String
	Enumerable Is Actually a Module

	Unified Event Handling
	Event
	The Events Hall of Fame
	Reacting to Form-Related Content Changes

	Playing with the DOM Is Finally Fun!
	Extending DOM Elements
	Element, Your New Best Friend
	Selector
	Debugging Our DOM-Related Code

	Form Management
	Toward a Better User Interface
	Looking at Form Fields
	Submitting Forms Through Ajax
	Keeping an Eye on Forms and Fields

	Ajax Has Never Been So Easy
	Before We Start…
	Hitting the Road: Ajax.Request
	Streamlining: Ajax.Updater
	Polling: Ajax.PeriodicalUpdater
	Monitoring Ajax Activity: Ajax.Responders
	Debugging Ajax
	Ajax Considered Harmful? Thinking About Accessibility and Ergonomy

	More Useful Helper Objects
	Storing Values in a Hash
	Expressing Ranges of…Well, Anything You Want!
	Periodical Execution Without Risk of Reentrance
	Templating Made Easy
	Examining the Current Browser and Prototype Library

	Performance Considerations
	Element Extension and the $ Function
	Iterations vs. Regular Loops
	Obsolete Event Handlers
	Recent Speed Boosts You Should Know About
	Small Is Beautiful

	Wrapping Up
	Building a Fancy Task List
	Laying the Groundwork
	It Takes Only 40 Lines: The JavaScript Code

	script.aculo.us
	Discovering script.aculo.us
	The Modules of script.aculo.us
	Using script.aculo.us in Your Pages

	Visual Effects
	What Are Those Effects, and Why Should We Use Them?
	Core Effects
	Diving into Effects
	Combined Effects
	Unlocking the Cool Factor: Effect Queues
	Effect Helpers
	How to Create Our Own Effects

	Drag and Drop
	Dragging Stuff Around
	Controlling How It Starts, Where It Goes, & How It Ends
	Ghosting
	Dragging and Scrolling
	Monitoring Drags
	Dropping Stuff
	Customizing Drop Behavior
	Sorting with Drag and Drop
	Common Pitfalls

	Autocompletion
	The Basics
	Local Autocompletion
	Getting Ajaxy
	Using Rich-Markup Choices
	Autocompleting Multiple Values in One Field
	Reacting to Completion with Callbacks

	Building DOM Fragments the Easy Way: Builder
	Building Explicitly
	Using an (X)HTML Representation

	In-Place Editing
	What's In-Place Editing Exactly?
	A Simple Example
	How Can We Tweak the Ajax Persistence?
	Customizing the Appearance
	Dealing with Multiple Lines
	Editing Alternative Text
	Disabling In-Place Editing
	Offering a List of Values Instead of Text Typing

	Sliders
	Creating a Simple Slider
	Customizing the Basics
	Restricting Range or Allowed Values
	Tweaking an Existing Slider and Adding Controls
	Defining Multiple Values

	Sound Without Flash
	Where Does It Work?
	How Do We Play Sounds?
	Playing Multiple Sounds on Multiple Tracks

	Extending and Contributing
	Building Over: Classes, Inheritance, and DOM Extension
	Contributing!

	Further Reading
	Official Websites
	Useful Blogs by Prototype Core Members
	JavaScript Masters
	Community and New Sites Around Ajax
	ECMAScript Intimacy
	Bibliography

	Installing and Using Ruby
	On Windows
	On Linux
	On Mac OS X
	Running a Ruby Script
	``But I Don't Know a Thing About Ruby!''

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

