Extracted from:

You Never Knew JavaScript Could Do This!

This PDF file contains pages extracted from Prototype and script.aculo.us, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,
please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.
Copyright © 2008The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

7.1

Chapter 7

Playing with the
| |

When writing modern web applications, you find yourself doing a lot
of DOM manipulation. Traversing the DOM, fetching elements, show-
ing and hiding them, replacing fragments of the document with new
(X)HTML contents, fiddling with CSS class names. .. this is what we
web developers do.

Unfortunately, if we stick with the raw standards (such as DOM Level
2), we find ourselves tragically underequiped. The tools of the trade
were judged and found wanting. It feels like building a skyscraper with
cardboard and string.

But you're using Prototype now.

True to its aim, Prototype comes with plenty of nifty tools you can use
to tweak the DOM. At the heart of it is the notion of DOM extension. The
idea is simple: one way or another, you can get “extended” versions of
the original DOM nodes, and these versions are way easier to play with
than their bare-bones counterparts. At the time of this writing, there
are 45+ extension-provided methods in there.

Extending DOM Elements

Let’s first focus on the net result for the web developer: fetching an
element through the $() function (which we saw in Section 3.2, Quick
Fetching of Smart Elements with $, on page 44) guarantees that what
you get is the extended version of the original DOM element.

EXTENDING DOM ELEMENTS < 133

An extended element is a DOM element that also features all the meth-
ods we will see in the next section (plus extra ones if it’s a form or
form field element, as we’ll see in Chapter 8, Form Management, on
page 175). It is not a fresh object, distinct from the original DOM node.
It’s the same node but augmented with Prototype’s extensions.

I could discourse for pages about Prototype’s extension mechanism,
but this would be slightly beyond the scope of this book. So instead
of entering into the nitty-gritty details of stuff like Element.Methods,
Element.Methods.Simulated, or Element._attributeTranslations, let me an-
swer the most common questions first.

Speed Cost

On browsers providing DOM element types with a prototype, the cost is
close to zero. Prototype automatically extends the relevant prototypes
at loading time, which is blazing fast. This is, most notably, the case
of all Gecko-based browsers (and hence Firefox), Opera (at least from
version 9), Konqueror, and Safari (although specific versions of Safari
may handle this in a specific way, the particulars are addressed by
Prototype, and the speed cost is roughly identical).

For browsers with no such support (for example, Internet Explorer),
the element is extended on the fly the first time it is requested as an
extended element (either through the $() function or through a direct
call to Element.extend(), which your own code should never need to
do). Such an extension request can very well happen inside Prototype’s
code, because numerous methods in Prototype return extended ele-
ments. The element is then marked as extended, and there will be no
further cost associated with requesting it as an extended element.

However, on-the-fly element extension is not a trivial cost in itself, and
when applied over a large number of elements (depending on your envi-
ronment, this can be anywhere between 100 and 1,000 elements), the
speed hit can be noticeable. So, you should refrain from needlessly
relying on $() (or other methods that guarantee extended results) when
working with very large sets of elements. All extended methods can be
called indirectly on “raw” elements (but because they will use $() over
the element internally, what may have been raw before is now extended

anyway. . .).

http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND <« 134

What If These Methods Exist Natively?

Simple as Sunday: theyre left as is. Prototype’s method extensions
apply only when there is no native version present in order to maxi-
mize execution speed.

7.2 Element, Your New Best Friend

Your gateway to DOM extension is the Element namespace. It contains
the DOM extension machinery and the repositories for the extra meth-
ods (mostly Element.Methods).

Calling the Methods

All those methods can be used in two ways:

* As vanilla functions, which can be passed any DOM element (in-
cluding, most important, nonextended ones) as their first argu-
ment. The easiest way is to call them through the Element name-
space, like this:

Element.remove(elt);
Element.next(elt, '1i');

* As methods over extended elements, which certainly feels more

like object-oriented programming;:

$Celt).remove();

$Celt).next('1i");
All mutative methods return their original element extended. A muta-
tive method alters the element in some way. Methods returning ele-
ments (for example, fetching the descendant elements of the one passed
as first argument) return extended elements, too. This makes method
chaining easy:

$CeTt).next('T7i").remove();

Building a Staff Manager

To get familiar with most methods provided through DOM extension,
we’ll build a complete example that heavily relies on it. The idea is
to have a simple web page that lets us describe people and groups of
people. Groups can be nested to an arbitrary depth.

Our page lets us see the whole staff using a tree representation, on
the left, and lets us create new groups and people, as well as rename
existing ones, through a small editor zone next to the tree. Naturally, all

http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND <« 135

| & Organizing your staff - Iceweasel
File Edit Wiew History Bookmarks Tools Help

- - @‘-' g [file:/finomeftddipersofiivres | =] | [[Gl+]

Organizing your staff

Your staff Item properties
Bl AcmE Name: |Sébastien Gruhier] |
gror [~ Is agroup?

[sébastien Gruhier

[Alexis Jaubert

[Guillaume Réan
B HR

" sandrine Daspet

Remove | Rename |

[Xavier Borderie

Done Q

Figure 7.1: Our finished screen
I EEEEEEEE———,

groups in the tree can be collapsed and expanded. All nodes can also
be checked using a plain checkbox. This opens the door to further use
of the data (for example, we could use this to select to whom to send an
e-mail).

The completed screen looks like Figure 7.1. Note that we provide a high-
lighted representation of the selected node. To build this tool, we will
need to follow several steps:

1. Create the HTML file for our screen.
2. Create a JavaScript representation of our data tree.

3. Write a function that takes the JavaScript representation of a per-
son or group and inserts the corresponding DOM fragment in the
document.

http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND < 136

4. Handle clicks anywhere in the tree to deal with group togglers
(those little +/- signs that let us expand or collapse groups) but
also select (or deselect) nodes.

5. Maintain editor state depending on the currently selected node
(buttons may be disabled or enabled, information needs to be pre-
filled when a node gets selected).

6. Handle uses of the form on the right in order to deal with node
creation, renaming, or removal.

Of course, we'll do all this with the proper double take of polish, making
sure the user experience is as smooth as possible and trying to leverage
Prototype’s features as much as possible.

Because the primary goal of this chapter is to acquaint you with Proto-
type’s DOM extensions, we will not add an extra layer of complexity by
using Ajax to deal with server-side data. However, in a later chapter, we
will come back to this example and turn it into an actual client/server
application, using Ajax for a snappy user experience. Data will not
reside only as JavaScript objects on the client side but be stored on the
server side. This will let us tinker away with form serialization methods
and most Ajax-related utilities.

Laying the Groundwork: Our HTML Page

The markup for our screen is fairly simple: a title, proper definition of
charset, binding on the style sheets and scripts, and two zones (the tree
and the editor form). Here you go:

Download prototype/dom/people.htmi

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtm11/DTD/xhtm1l-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtm1" lang="en" xml:lang="en">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>0Organizing your staff</title>
<link rel="stylesheet" type="text/css" href="people.css" />
<script type="text/javascript" src="../../prototype.js"></script>
<script type="text/javascript" src="people.js"></script>

</head>

<body>
<h1>0rganizing your staff</hl>

<div id="tree">
<h2>Your staff</h2>
<form id="staff">

</form>
</div>

http://media.pragprog.com/titles/cppsu/code/prototype/dom/people.html
http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND <« 137

<div id="props">
<h2>Item properties</h2>
<form id="editor">
<p>
<label for="edtName" accesskey="N">Name:</T1abel>
<input type="text" id="edtName" />
</p>
<p>
<input type="checkbox" id="chkIsGroup" />
<label for="chkIsGroup" id="1b1IsGroup"
accesskey="G">Is a group?</label>
</p>
<p>
<input type="button" id="btnRemove" value="Remove"
accesskey="R" />
<input type="button" id="btnAddChild" value="Add as child"
accesskey="C" />
<input type="submit" id="btnSubmit" value="Create" />
</p>
</form>
</div>
</body>
</htm1>

We use a <form> element in the tree because we're going to put check-
boxes in there and strict HTML mandates that form fields be located
in forms (which rather makes sense). We also nest a element
because in our tree, all group-like levels (be it the root level, like here,
or a regular group level) use a to contain their children.

This is because we're going to represent our tree with proper semantic
markup: using nested lists. Since we have no specific ordering require-
ments, we use instead of . Each item in such a list is a <Ii>,
inside which all item contents (including sublists) are located.

The markup for our editor form is fairly short as well: a text field, a
checkbox, and three buttons (two regular ones that need to be specifi-
cally activated, which will trigger the removal of the currently selected
element and the creation of a new node below this same element, re-

spectively, and a submission button, which is activated whenever the
user hits the key in the text field or the checkbox in addition to
plain old clicking. . .). That submission button either creates an element
at root level (when no element is selected) or renames the currently
selected element. This makes for faster batch-oriented operation.

http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND <« 138

So far, with no styling, the page is a mess. Let’s add some CSS magic:
Download prototype/dom/people.css

tnel body { font-family: sans-serif; font-size: small; }
hl { color: navy; font-size: x-large; font-weight: normal; }

h2 {
color: green; font-size: larger;
5 border-bottom: 1lpx solid green; margin: 0 0 0.5em;
}
img { border: 0; }
#tree {
10 width: 25em; height: 30em; overflow: auto; float: left;

border: 1px solid #444; background: #eee; padding: 0.5em;
cursor: default;

}

15 #props {
width: 25em; height: 10em; margin-left: 27em;
border: 1lpx solid #444; background: #eee; padding: 0.5em;
}

20 #tree ul {
Tist-style-type: none;
margin: 0; padding: 0;
}
- #tree ul ul { padding-left: 1.3em; }
25 #tree 1i { padding-left: 0.lem; margin: 0.4em 0; }
- #tree span { padding: 5px; }

span.group { font-weight: bold; }
30 #tree span.person { font-weight: normal; margin-left: 16px; }

#tree span.selected {
border: 1px solid #004; padding: 4px; background: #ddf;

- color: navy;
35}

#editor p { position: relative; height: 1.3em; }

#edtName, #chkIsGroup { position: absolute; left: 4em; margin-Tleft: 0; }

#edtName { padding: 0 0.lem; right: 0; }
40 #edtName:focus, #edtName:active { border: 2px solid black;

background: #ffd; }
#1b1IsGroup { position: absolute; left: 6.3em; }

Some of this is not immediately useful, because it relates to elements
that will be created dynamically by script to represent tree nodes (those
are the lines 24 to 35). The rest is styling as usual. Our page is now
ready for life to be breathed into it, thanks to scripting.

http://media.pragprog.com/titles/cppsu/code/prototype/dom/people.css
http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND < 139

Representing the Staff: Our Staff Object

We'll put most of the functionality of staff management into a custom
object, which we’ll call, quite simply, Staff. Inside it, we’ll put many
methods, plus the actual data structure, tucked neatly in a nodes field.
It is an array of “tree nodes,” each of which is a simple object with at
least two properties: id and name.

The id property matches the id= attribute of the <Ii> elements repre-
senting the tree node in the screen and is of the form itemXXX, where
XXX is an incrementally generated integer. The name property holds
the tree node’s name, its visible label.

If a tree node is actually a group, it also features a children property,
which is an array. Such an array holds tree node objects for anything
inside the group, and so on and so forth, recursively.

Let us start by defining a default tree with data for the staff of an imagi-
nary company, ACME.! This goes like this:

Download prototype/dom/fragments/people_1.js

var Staff = {
nodes: [
{ id: 'iteml', name: 'ACME',
children: [
{ id: 'itemll', name: 'IT',
children: [

{ id: 'itemlll', name: 'Sébastien Gruhier' },
{ id: '"iteml12', name: 'Alexis Jaubert' },
{ id: 'iteml113', name: 'Guillaume Réan' }

113,

{ id: 'iteml2', name: 'HR',
children: [

{ id: 'iteml121', name: 'Sandrine Daspet' }

11,

{ id: 'iteml3', name: 'Xavier Borderie' }

11,
]
}; // Staff

Here we are: our staff is represented in Staff.nodes. The next step is to
turn this data into actual tree nodes on the screen. . ..

1. Boy, that's groundbreaking.

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_1.js
http://www.pragprog.com/titles/cppsu

ELEMENT, YOUR NEW BEST FRIEND < 140

Walking Around: Moving Across the DOM

down([selector = "*'] [, index=0]) — HTMLElement

firstDescendant() — HTMLETlement

next([selector = "*'] [, index=0]) — HTMLElement

previous([selector = '*'] [, index=0]) — HTMLETement

up([selector = '*'] [, index =0]) — HTMLETement

To build and manipulate DOM fragments based on this JavaScript data
structure, we need to learn about two categories of methods in Element:
those that let us walk the DOM easily and those that let us alter the
contents of elements.

Bare-bones DOM walking is quite the nightmare: the properties pro-
vided by the W3C specification—firstChild, lastChild, childNodes, previous-
Sibling, and nextSibling—work only at the node level, not at the element
level. The immediate consequence of this low-level attitude is that we
end up walking through empty text nodes produced by markup format-
ting (for example, line breaks and indentation), comment nodes, entity
references, and so forth. This is indeed unfortunate, because in the
vast majority of cases, we concern ourselves only with elements. Not
only that, but we usually want to reach for a specific kind of element
(for example, a or <a> element).

Prototype extends DOM elements with methods that let us do just that
(it also lets us look at whole element chains in all directions, as we’ll
see in Section 7.2, Meeting the Family: Ancestors, Children, Siblings. . .,
on page 162). These are named up(), down(), next(), and previous(), and
all share they same signature:

* With no argument, they get you to the closest element in their
direction.

* With a string argument, they interpret it as a CSS selector, relying
on the amazing capabilities of the Selector class, which we will
explore in greater depth on page 169. A common form of selector
in this context is a simple tag name.

* With an integer argument, they get you to the indexth element in
their direction.

* With two arguments, a string and an integer, they get you to the
indexth element among those obtained by the selector, counting
from the current element outward.

There is also an optimized method for a common use case, which just
needs the first child element, with no additional requirement. It’s cov-
ered by firstDescendant().

http://www.pragprog.com/titles/cppsu

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Prototype and script.aculo.us’s Home Page
http://pragprog.com/fitles/cppsu
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments in the news.

If you liked this PDF, perhaps you'd like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/fitles/cppsu.

ContoctlUs

Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog
Customer Service: orders@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragprog.com/titles/cppsu
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragmaticprogrammer.com/titles/cppsu
www.pragmaticprogrammer.com/catalog

	Contents
	Preface
	Introduction
	It's About Time
	What's in This Book, and How Is It Organized?
	Acknowledgments

	Prototype
	Discovering Prototype
	What Is Prototype, and What Is It Not?
	Using Prototype in Our Project
	What Does Our JavaScript Look Like When Using Prototype?
	Prototype Jargon and Concepts
	What Are Prototypes Anyway?
	Running Prototype Code Samples in This Book

	Quick Help with the Dollars
	Shortcuts Should Be Short
	Quick Fetching of Smart Elements with $
	$w, Because Array Literals Are Boring
	$$ Searches with Style
	$A, the Collection Unifier
	$F Is a Field Expert
	$H Makes a Hash of Things
	Handling Ranges with $R

	Regular JavaScript on Steroids
	Generic Object Manipulation
	Proper Function Binding
	Your Functions Actually Know More Tricks
	Numbers
	Strings
	Arrays
	Full-Spectrum JSON Support

	Advanced Collections with Enumerable
	The Core Method: Iterating with each
	Getting General Information About Our Collection
	Finding Elements and Applying Filters
	Grouping Elements and Pasting Collections Together
	Computing a Derived Collection or Value
	Order Now: Getting Extreme Values and Using Custom Sorts
	Turning Our Collection into an Array or Debugging String
	Enumerable Is Actually a Module

	Unified Event Handling
	Event
	The Events Hall of Fame
	Reacting to Form-Related Content Changes

	Playing with the DOM Is Finally Fun!
	Extending DOM Elements
	Element, Your New Best Friend
	Selector
	Debugging Our DOM-Related Code

	Form Management
	Toward a Better User Interface
	Looking at Form Fields
	Submitting Forms Through Ajax
	Keeping an Eye on Forms and Fields

	Ajax Has Never Been So Easy
	Before We Start…
	Hitting the Road: Ajax.Request
	Streamlining: Ajax.Updater
	Polling: Ajax.PeriodicalUpdater
	Monitoring Ajax Activity: Ajax.Responders
	Debugging Ajax
	Ajax Considered Harmful? Thinking About Accessibility and Ergonomy

	More Useful Helper Objects
	Storing Values in a Hash
	Expressing Ranges of…Well, Anything You Want!
	Periodical Execution Without Risk of Reentrance
	Templating Made Easy
	Examining the Current Browser and Prototype Library

	Performance Considerations
	Element Extension and the $ Function
	Iterations vs. Regular Loops
	Obsolete Event Handlers
	Recent Speed Boosts You Should Know About
	Small Is Beautiful

	Wrapping Up
	Building a Fancy Task List
	Laying the Groundwork
	It Takes Only 40 Lines: The JavaScript Code

	script.aculo.us
	Discovering script.aculo.us
	The Modules of script.aculo.us
	Using script.aculo.us in Your Pages

	Visual Effects
	What Are Those Effects, and Why Should We Use Them?
	Core Effects
	Diving into Effects
	Combined Effects
	Unlocking the Cool Factor: Effect Queues
	Effect Helpers
	How to Create Our Own Effects

	Drag and Drop
	Dragging Stuff Around
	Controlling How It Starts, Where It Goes, & How It Ends
	Ghosting
	Dragging and Scrolling
	Monitoring Drags
	Dropping Stuff
	Customizing Drop Behavior
	Sorting with Drag and Drop
	Common Pitfalls

	Autocompletion
	The Basics
	Local Autocompletion
	Getting Ajaxy
	Using Rich-Markup Choices
	Autocompleting Multiple Values in One Field
	Reacting to Completion with Callbacks

	Building DOM Fragments the Easy Way: Builder
	Building Explicitly
	Using an (X)HTML Representation

	In-Place Editing
	What's In-Place Editing Exactly?
	A Simple Example
	How Can We Tweak the Ajax Persistence?
	Customizing the Appearance
	Dealing with Multiple Lines
	Editing Alternative Text
	Disabling In-Place Editing
	Offering a List of Values Instead of Text Typing

	Sliders
	Creating a Simple Slider
	Customizing the Basics
	Restricting Range or Allowed Values
	Tweaking an Existing Slider and Adding Controls
	Defining Multiple Values

	Sound Without Flash
	Where Does It Work?
	How Do We Play Sounds?
	Playing Multiple Sounds on Multiple Tracks

	Extending and Contributing
	Building Over: Classes, Inheritance, and DOM Extension
	Contributing!

	Further Reading
	Official Websites
	Useful Blogs by Prototype Core Members
	JavaScript Masters
	Community and New Sites Around Ajax
	ECMAScript Intimacy
	Bibliography

	Installing and Using Ruby
	On Windows
	On Linux
	On Mac OS X
	Running a Ruby Script
	``But I Don't Know a Thing About Ruby!''

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

