
Extracted from:

Prototype and script.aculo.us
You Never Knew JavaScript Could Do This!

This PDF file contains pages extracted from Prototype and script.aculo.us, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

LOOKING AT FORM FIELDS 179

Disabled? Let It Show!

A few browsers do not efficiently display disabled elements;
for instance, Konqueror and Internet Explorer do not alter
the font color of disabled drop-down listboxes or the back-
ground color of disabled flat listboxes or multiline text fields
(and single-line too, on Internet Explorer). Opera does not
alter the background color of checkboxes and radio but-
tons. Such lackings make it impossible for the user to under-
stand at a glance that part of the UI is off-limits.

This can be fixed quickly with a bit of CSS styling. If you’re
targeting CSS 2–compatible browsers, just use something like
this:

*[disabled] { background-color: #ccc; color: gray; }

(CSS 3 would even let us use *:disabled, but do you really
want to exclude Internet Explorer for another decade?)

If you must support browsers that do not feature CSS 2
attribute selectors, you will need to equip your disabled ele-
ments with specific class names, too. This can be done easily
with Prototype’s magic:

$('myForm).select('*:disabled').invoke('addClassName',
'disabled');

//...and later on, re-enabling...
$('myForm').select('.disabled').invoke('removeClassName',

'disabled');

There is also a common use case where you need to disable an entire
form (or enable it). Well, that’s a piece of cake—just use the same meth-
ods over the form itself, instead of specific elements.

8.2 Looking at Form Fields

formElt.getElements() → [fieldElt, ...]
formElt.getInputs([typeName] [, name]) → [fieldElt, ...]

We often need to grab some or all of the elements in a specific form.
Even inside Prototype, this is a common task: to disable or enable all
the fields, to find the first one, or to serialize the form or determine
whether anything has changed since the last time we looked. . . .

The catchall approach is to use getElements(), which returns all fields
in the form, in document order. This includes <input> tags having

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

SUBMITTING FORMS THROUGH AJAX 180

type="hidden", disabled fields, and so on. However, <button> fields are
omitted; only <input>, <select>, and <textarea> tags are taken into
account.

If you need to be more surgical about it (which is a good thing), you
can go with getInputs(). This one is designed specifically for those cases
where you need to fetch <input> fields, usually with a specific type=,
name=, or both.

For this second method to work properly, you’d better stick to lowercase
(official XHTML) type names in your markup, your DOM generation
code, and your getInputs() calls. In the same vein, name filtering is case-
sensitive. If you need to filter on name but not on type, simply pass null

as the first argument. Elements are returned in document order.

Here’s a common use case: do you want to check whether any of the
checkboxes with name="answer" is, indeed, checked? There you go:

if ($('myForm').getInputs('checkbox', 'answer').pluck('checked').any())
// ...

However, if you need more advanced filtering, you’ll have a simpler time
using methods such as $$() or select(). For instance, assuming your
required fields all have Req in their id= attributes, you could check
(naively, because this relies on empty strings, not blank strings) that
they’re all filled in like this:

if ($('myForm').select('*[name*="Req"]').invoke('present').all())
// Missing fields!

Whatever the method you used, all returned elements are extended for
your DOM extension pleasure.

8.3 Submitting Forms Through Ajax

Indeed, Ajax-based form submission is at the heart of the new gener-
ation of web applications, so if you haven’t got on board yet, it’s about
time. I’ll help you in, don’t worry. But before plunging into Ajax (some-
thing we’ll do in detail in Chapter 9, Ajax Has Never Been So Easy, on
page 188), we need to consider what’s in a form?

Shape Shifters: The Changing Nature of Field Values
fieldElt.getValue() → value | [value, ...]
fieldElt.setValue(value | [value, ...]) → HTMLElement

Depending on the nature of a field, its value can take one of two forms:
a single value (usually a string or, for checkboxes and radio buttons,

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

SUBMITTING FORMS THROUGH AJAX 181

a boolean) or an array of values. This second variant happens in only
one situation: listboxes with multiple selections enabled (<select multi-

ple=multiple">).

Now for those pesky details that you will wonder about at least once:

• Unchecked radio buttons and checkboxes yield the value null. Oth-
erwise, they yield their value property, which is based on their
value= attribute (you should always specify this attribute, which
has no normalized default value).

• Other <input> elements yield their value property, based on user
interaction (full text contents for text fields, for instance).

• Single-selection listboxes (drop-down or flat) yield the value of the
selected option in a DOM-compliant way (Internet Explorer would
otherwise fail to use the option’s text if no value= attribute were
specified).

• Multiple-selection listboxes yield an array of option values, ob-
tained in a DOM-compliant way in the document order of the rel-
evant <option> elements.

Version 1.6 introduces the reverse operation, setValue(), which lets you
set a field’s value using the same value syntax you’d get as a result of
getValue(). It relies on the same internal mechanisms, so consistency
is guaranteed. This comes in handy when you need to populate a form
dynamically (perhaps from JSON data fetched through Ajax).

One last thing: remember the $F() utility function is actually an alias of
getValue().

Serializing Fields and Whole Forms

Getting a single field’s value in a unified way is nice enough, but most
of the time you’ll need to take some or all of the fields in a form, mash
them together into some reliable string representation, and send that
over to the server side.

How Can I Serialize Then?

To serialize, just use a nice method from Prototype, of course. And you
have a few to choose from, depending on your use case:

fieldElt.serialize() → String
formElt.serialize([options]) → String | hashObj
Form.serializeElements(elements, [options]) → String | hashObj

Let’s start simple, with the serialization of only one field. All fields fea-
ture a serialize() method, which either returns an empty string (if the

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

SUBMITTING FORMS THROUGH AJAX 182

Joe Asks. . .

Why Should I Serialize?

You use serialization when you captured information thanks
to a form field (or a whole form) and now need to send this
data over the wire in some suitable format. And Prototype’s
serialization plays nicely with HTTP.

When a form is submitted the regular way, the browser takes
care of this for you. When you take over, you’re a bit more
on your own. Serialization becomes your business, not the
browser’s anymore.

You can do this from an HTML page in two ways: with a
GET request, using URL-encoded parameters right in the URL
(as in /myapp/users/list?filter=john&details=yes), or with a POST
request, using parameters in the request body. The default
format for these is, indeed, the very same URL-encoding you
would use in a GET request. It is the format attached to the
MIME type application/x-www-form-urlencoded, which rules
supreme on the Web.

That is why our serialization methods use that format. If you
need something else (say, XML or JSON), you can easily
grab the form fields you’re interested in—which is what we
learned to do in the previous section—and cook it up just
to your taste (a pinch of basil would be nice). It can be as
simple as this:

Object.toJSON($(ourForm).serialize(true))

Calling serialize(true) returns a hash-like object instead of the
default serialized string. The generic Object.toJSON() mecha-
nism will easily process this vanilla object. But for most cases,
you should be happy with the default serialization. After all,
this is what most server-side technologies natively work with.

CLICK HERE to purchase this book now.

/myapp/users/list?filter=john&details=yes
http://www.pragprog.com/titles/cppsu

SUBMITTING FORMS THROUGH AJAX 183

field value is undefined, which should almost never happen except for
files) or returns a name=value string, with its two parts properly URL-
encoded.

Now, here’s the nitty-gritty, which mostly boils down to regular HTML
form serialization:

• Values are based on the getValue() method we discussed earlier.

• Fields with null values will be handled as if their value were an
empty string.

• Fields with undefined values will be serialized with only their name
as key (no = sign).

• Fields with array values (that is, multiple-selection listboxes) get
serialized as if there were multiple fields with this same name, one
per value.

The two other methods are closely related and deal with serializing
part or all of a form. Calling serialize() on a form simply forwards to
Form.serializeElements() using all elements in the form (except for
type="submit" elements, where only one will be used, which is by default
the first one).

Most of the time you’re happy with a URL-encoded string represen-
tation, which is what you get by default. If you pass a hash option
with the value true, you’ll get the resulting hash object (not actually
a Hash instance, just a vanilla JavaScript object) back, containing all
field names and values, which you can then use to build your own
serialization.

By default, if there are multiple type="submit" fields, only the first one
in document order will be serialized. You can change that by specifying
the value of the name= attribute for the submission field you want to
serialize. Just specify it as the submit option.

For instance, the following call:

$('myForm').serialize({ hash: true, submit: 'delete' })

. . . will return a serialization hash (not a preencoded string), having
used the name="delete" submit field instead of the first one in the form.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

SUBMITTING FORMS THROUGH AJAX 184

What About File Fields?

When a form contains a file field (<input> with type="file"),
traditional serialization cannot happen anymore. Instead of
using regular URL-style encoding, the form must be transmit-
ted as multipart/form-data and encode the file bytes in a
specific MIME part.

Manually creating this multipart encoding would not be dif-
ficult, but JavaScript security prevents it from accessing the
contents of local files directly (unless you tinker with it, which
is beyond most user’s abilities or access rights). Because of
this, Prototype cannot use actual Ajax for sending local files.

The usual workaround for this is to use a hidden <iframe> as
the target for the <form> and submit the form the regular
way. Once the <iframe> is done loading the result, we can
access it through scripting. This is rather old-school and a bit
ugly, but so far this is all we have.

Note than a later version of Prototype may autoswitch
to such a technique when you’re trying to Ajaxify a
form with file fields. In the meantime, you can find
detailed walkthroughs for this on many web pages, such as
http://www.webtoolkit.info/ajax-file-upload.html (and a Google
search on Ajax file upload will yield tons of other options).

Streamlining Ajax Forms with request

This chapter is about forms, not Ajax. We will dive into the details (and
multiple options) of Ajax processing in Chapter 9, Ajax Has Never Been

So Easy, on page 188. But there is a form-specific Ajax facility, which
we’ll look at quickly here. It appeared in Prototype 1.5.1 and aims at
streamlining a very common use case: take a regular form, complete
with method= and action=, and submit it over Ajax.

formElt.request([options]) → Ajax.Request

You’ll have to refer to Section 9.2, Options Common to All Ajax Objects,
on page 201 for all the details on the wealth of available options. Just
know that this simple call (for example, $(’myForm’).request()) submits
your form through Ajax, using its attributes to determine the HTTP verb

CLICK HERE to purchase this book now.

http://www.webtoolkit.info/ajax-file-upload.html
http://www.pragprog.com/titles/cppsu

KEEPING AN EYE ON FORMS AND FIELDS 185

(GET or POST) and the target URL.2 You can use this to unobtrusively
turn your forms over to Ajax when JavaScript is enabled:

document.observe('contentloaded', function() {
$$('form').invoke('observe', 'submit', function(e) {

e.stop();
$(Event.element(e)).request();

});
});

This covers a common idiom but is certainly not sufficient for all situ-
ations. For more advanced needs, you will have to manually use Ajax.

Request and its flock.

8.4 Keeping an Eye on Forms and Fields

In Section 6.3, Reacting to Form-Related Content Changes, on page 129,
we discovered event-based observers for forms and fields. Whenever an
event was triggered to herald a possible value change on a field (or
somewhere in a form), these observers would verify that a change had
indeed occurred and, if satisfied, would trigger a callback.

Such an approach is not always satisfactory: change-related events
trigger late (usually when the field loses focus), too late for some uses
(such as autocompletion or on-the-fly validation). Enter time-based
observers:

new Form.Observer(formElt, interval, callback)
new Field.Observer(fieldElt, interval, callback)
observer.stop()

These observers work the same way, but they require an interval or
period (expressed in seconds, with fractional numbers allowed), which
determines how often they will check up on the data they’re observing
(field observers check up on a single field, and form observers check up
on the whole set of values within the form, relying on serialization for
it). Aside from this, the rules do not change. As soon as there actually is
a new value (including, obviously, the first time it checks), the callback
is triggered.

We used a time-based field observer in our consolidated example in
Chapter 7, Playing with the DOM Is Finally Fun!, on page 132, in order
to enable or disable buttons based on whether a text field was blank.

2. Starting with Prototype 1.6, if <form> features no action= attribute or an empty one,
the current URL will be used.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

KEEPING AN EYE ON FORMS AND FIELDS 186

Waiting for the field to lose its focus was inadequate. The user might
click the enabled button only to find it suddenly disabled because by
clicking, the text field would lose its focus. Visual feedback needed to
take place earlier and be live. The resulting code was confoundingly
simple:

new Field.Observer('edtName', 0.3, function() {
$('btnSubmit').disabled = $F('edtName').blank();

});

Checking every 0.3" is definitely live enough (the user won’t have to
consciously wait after they type to see the UI get updated) but large
enough an interval not to hog the processor.

Since Prototype 1.6, these observer classes descend from PeriodicalExe- 1.6

cuter, so they inherit its stop() method, which lets you put the observer
to rest.

What We Just Learned

Here are the main take-away points about Prototype’s form-related fea-
tures:

• The features operate at two levels: full forms (the Form namespace)
and individual fields (the Field namespace, which is an alias of
Form.Element).

• Most methods in these namespaces appear as additional exten-
sions on the relevant DOM elements.

• Most of the API deals with value retrieval and setting, either indi-
vidually through getValue() and setValue() or at the form’s level
through such methods as serialize().

• Prototype smooths over cross-browser inconsistencies in field
value retrieval (on such issues as no-value-attribute list elements
or elements that can be toggled) and provides a powerful value-
setting mechanism that helps implement dynamic form filling.

• Form serialization is handy for Ajax submission of the data, but
common cases can be automated one step further using the
request() method.

• Interval-based observers let us react quickly to changes in a form
or individual field to implement dynamic behavior (such as en-
abling or disabling parts of the UI based on the current form data).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

KEEPING AN EYE ON FORMS AND FIELDS 187

Neuron Workout

• How would you implement an equivalent of Field.Observer using
PeriodicalExecuter3 directly? What about Form.Observer?

• Write a method that takes all the radio buttons with a given field
name and toggles their availability (enables or disables them, de-
pending on their state).

3. For details on this class, see Section 10.3, Periodical Execution Without Risk of Reen-

trance, on page 232.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cppsu

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Prototype and script.aculo.us’s Home Page

http://pragprog.com/titles/cppsu

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/cppsu.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com
Author Proposals: proposals@pragmaticprogrammer.com

http://pragprog.com/titles/cppsu
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragmaticprogrammer.com/titles/cppsu
www.pragmaticprogrammer.com/catalog

	Contents
	Preface
	Introduction
	It's About Time
	What's in This Book, and How Is It Organized?
	Acknowledgments

	Prototype
	Discovering Prototype
	What Is Prototype, and What Is It Not?
	Using Prototype in Our Project
	What Does Our JavaScript Look Like When Using Prototype?
	Prototype Jargon and Concepts
	What Are Prototypes Anyway?
	Running Prototype Code Samples in This Book

	Quick Help with the Dollars
	Shortcuts Should Be Short
	Quick Fetching of Smart Elements with $
	$w, Because Array Literals Are Boring
	$$ Searches with Style
	$A, the Collection Unifier
	$F Is a Field Expert
	$H Makes a Hash of Things
	Handling Ranges with $R

	Regular JavaScript on Steroids
	Generic Object Manipulation
	Proper Function Binding
	Your Functions Actually Know More Tricks
	Numbers
	Strings
	Arrays
	Full-Spectrum JSON Support

	Advanced Collections with Enumerable
	The Core Method: Iterating with each
	Getting General Information About Our Collection
	Finding Elements and Applying Filters
	Grouping Elements and Pasting Collections Together
	Computing a Derived Collection or Value
	Order Now: Getting Extreme Values and Using Custom Sorts
	Turning Our Collection into an Array or Debugging String
	Enumerable Is Actually a Module

	Unified Event Handling
	Event
	The Events Hall of Fame
	Reacting to Form-Related Content Changes

	Playing with the DOM Is Finally Fun!
	Extending DOM Elements
	Element, Your New Best Friend
	Selector
	Debugging Our DOM-Related Code

	Form Management
	Toward a Better User Interface
	Looking at Form Fields
	Submitting Forms Through Ajax
	Keeping an Eye on Forms and Fields

	Ajax Has Never Been So Easy
	Before We Start…
	Hitting the Road: Ajax.Request
	Streamlining: Ajax.Updater
	Polling: Ajax.PeriodicalUpdater
	Monitoring Ajax Activity: Ajax.Responders
	Debugging Ajax
	Ajax Considered Harmful? Thinking About Accessibility and Ergonomy

	More Useful Helper Objects
	Storing Values in a Hash
	Expressing Ranges of…Well, Anything You Want!
	Periodical Execution Without Risk of Reentrance
	Templating Made Easy
	Examining the Current Browser and Prototype Library

	Performance Considerations
	Element Extension and the $ Function
	Iterations vs. Regular Loops
	Obsolete Event Handlers
	Recent Speed Boosts You Should Know About
	Small Is Beautiful

	Wrapping Up
	Building a Fancy Task List
	Laying the Groundwork
	It Takes Only 40 Lines: The JavaScript Code

	script.aculo.us
	Discovering script.aculo.us
	The Modules of script.aculo.us
	Using script.aculo.us in Your Pages

	Visual Effects
	What Are Those Effects, and Why Should We Use Them?
	Core Effects
	Diving into Effects
	Combined Effects
	Unlocking the Cool Factor: Effect Queues
	Effect Helpers
	How to Create Our Own Effects

	Drag and Drop
	Dragging Stuff Around
	Controlling How It Starts, Where It Goes, & How It Ends
	Ghosting
	Dragging and Scrolling
	Monitoring Drags
	Dropping Stuff
	Customizing Drop Behavior
	Sorting with Drag and Drop
	Common Pitfalls

	Autocompletion
	The Basics
	Local Autocompletion
	Getting Ajaxy
	Using Rich-Markup Choices
	Autocompleting Multiple Values in One Field
	Reacting to Completion with Callbacks

	Building DOM Fragments the Easy Way: Builder
	Building Explicitly
	Using an (X)HTML Representation

	In-Place Editing
	What's In-Place Editing Exactly?
	A Simple Example
	How Can We Tweak the Ajax Persistence?
	Customizing the Appearance
	Dealing with Multiple Lines
	Editing Alternative Text
	Disabling In-Place Editing
	Offering a List of Values Instead of Text Typing

	Sliders
	Creating a Simple Slider
	Customizing the Basics
	Restricting Range or Allowed Values
	Tweaking an Existing Slider and Adding Controls
	Defining Multiple Values

	Sound Without Flash
	Where Does It Work?
	How Do We Play Sounds?
	Playing Multiple Sounds on Multiple Tracks

	Extending and Contributing
	Building Over: Classes, Inheritance, and DOM Extension
	Contributing!

	Further Reading
	Official Websites
	Useful Blogs by Prototype Core Members
	JavaScript Masters
	Community and New Sites Around Ajax
	ECMAScript Intimacy
	Bibliography

	Installing and Using Ruby
	On Windows
	On Linux
	On Mac OS X
	Running a Ruby Script
	``But I Don't Know a Thing About Ruby!''

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

