Extracted from:

iCloud for Developers

Automatically Sync Your iOS Data,
Everywhere, All the Time

This PDF file contains pages extracted from iCloud for Developers, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina


http://www.pragprog.com

Th
Pra ematic
Oogrammers

iCloud

for Developers
Automatically Sync Your iOS Data,

Everywhere, All the Time

' !Qaré Rocchi

edited by John Osborn



iCloud for Developers

Automatically Sync Your iOS Data,
Everywhere, All the Time

Cesare Rocchi

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)

Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-60-4

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2013


http://pragprog.com

8.2

Initializing a Core Data Stack for iCloud

To initialize a classic Core Data application for iCloud, we must provide it
with the following: a data model, a context, and a coordinator. The context
mediates between the objects of an application (for example, the instances of
grocery items) and the Core Data framework. When we change an object or
create a new one, it’s never stored directly in the underlying store; it's com-
mitted to the application’s context. Only when we “flush” a context by calling
the save: method are the changes made permanent in the local device, the
data having first been checked for consistency. A call to the save: method also
triggers the propagation of data to iCloud. As with UlDocument data, the changes
may not be propagated immediately depending on the availability of an
appropriate connection, status of the device battery, and other conditions
determined by the operating system.

The coordinator, short for “persistent store coordinator,” mediates between
the context and the actual store (for example, a SQLite database). It is up to
the coordinator to pick out the changes in the context and serialize them
according to the type of Core Data storage (that is, SQLite, XML, or binary)
being used.

Model, context, and coordinator are usually defined in the application delegate.
In the Grocery-chp8-starter project for this chapter, these properties are defined
in the SMAppDelegate class.

In the next two sections, let’s see how the coordinator should be updated to
work with iCloud and then do the same for the application context.

Modifying the Coordinator

To a create coordinator for any Core Data application, we must complete the
following steps:

1. Create a reference to the database, which can be a SQLite, XML, or
binary file.

2. Instantiate a coordinator, passing the instance of model.

3. Register the coordinator by means of the addPersistentStoreWithType:configura-
tion:URL:options:error: method.

For example, here’s the code to create a coordinator for the non-iCloud version
of Grocery:

Grocery-chp8-starter/Grocery/SMAppDelegate.m
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

{

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-starter/Grocery/SMAppDelegate.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

*6

if (_persistentStoreCoordinator != nil) {
return persistentStoreCoordinator;

}

NSURL *storeURL = [[self applicationDocumentsDirectory]
URLByAppendingPathComponent:@"Grocery.sqlite"];

NSError *error = nil;

_persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:
[self managedObjectModel]];

if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil
URL:storeURL
options:nil
error:&error]) {

NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
abort();
}

return _persistentStoreCoordinator;

}

To initialize a coordinator for iCloud, it’s the third step that we need to change.
There are two modifications to be made. The first is to create a dictionary of
options required of an iCloud coordinator and pass it to the addPersistentStore-
WithType:configuration:URL:options:error: method. The second is to make sure that
the registration of the coordinator is nonblocking.

The dictionary has to include values for three properties.

NSPersistentStoreUbiquitousContentNameKey A name that uniquely identifies the store
in the ubiquity container

NSPersistentStoreUbiquitousContentURLKey A path to a file that will store the trans-
action logs

NSMigratePersistentStoresAutomaticallyOption A boolean value to specify how to perform
automatic migrations in the store

Before we build the dictionary, we first have to create the URL for the trans-
action log file whose name we’ll assign to NSPersistentStoreUbiquitousContentURLKey.
Here’s the code to create a subfolder in the ubiquity container, named
grocery_data, that we’ll use for the Grocery application:

Grocery-chp8-end/Grocery/SMAppDelegate.m
NSFileManager *fileManager = [NSFileManager defaultManager];

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

Initializing a Core Data Stack for iCloud ¢ 7

NSURL *transactionLogsURL = [fileManager
URLForUbiquityContainerIdentifier:nil];

NSString* coreDataCloudContent = [[transactionLogsURL path]
stringByAppendingPathComponent:
@"grocery data"l;

transactionLogsURL = [NSURL fileURLWithPath:coreDataCloudContent];

With a URL for the transaction file in hand, we can now build a dictionary to
initialize the coordinator for the Grocery database.

Grocery-chp8-end/Grocery/SMAppDelegate.m
NSDictionary* options = @{NSPersistentStoreUbiquitousContentNameKey :
@"com.studiomagnolia.coredata.grocery",
NSPersistentStoreUbiquitousContentURLKey:
transactionLogsURL,
NSMigratePersistentStoresAutomaticallyOption:
QYES
I

The final task is to register the coordinator in a way that doesn’t block inter-
action with the user interface. Nothing is more frustrating to users. To avoid
blocking, we should put registration into a background queue, a secondary
thread that performs data synchronization with the servers and notifies the
application when it’s done. To do this, I've resorted to Grand Central Dispatch
(GCD) and its dispatch_async() method.”

Once the registration of the coordinator has been completed, we will want to
notify the application. Here’s the code to do it for our Grocery project:

Grocery-chp8-end/Grocery/SMAppDelegate.m

dispatch async(dispatch get main queue(), "{
NSLog(@"persistent store added");
[[NSNotificationCenter defaultCenter]
postNotificationName:
@"com. studiomagnolia.groceryItemsSynchronized"
object:self
userInfo:nil];

1)

Now, let’s put all of this together and define the method persistentStoreCoordinator.
It belongs to the application delegate for Grocery, SMAppDelegate, as in the
starter project.

5. Ifyou are not familiar with GCD, you should read this document from Apple’s
documentation: https://developer.apple.com/library/mac/#documentation/Performance/Reference/

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
https://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

*8

Grocery-chp8-end/Grocery/SMAppDelegate.m
(NSPersistentStoreCoordinator *)persistentStoreCoordinator
{
if (_persistentStoreCoordinator != nil) {
return persistentStoreCoordinator;

}

_persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:
[self managedObjectModel]];

NSString *storePath = [[self applicationDocumentsDirectory]
stringByAppendingPathComponent:@"Grocery.sqlite"];

NSPersistentStoreCoordinator* psc = persistentStoreCoordinator;

dispatch _async(
dispatch get global queue(DISPATCH QUEUE PRIORITY DEFAULT, 0),
~

NSURL *storeUrl = [NSURL fileURLWithPath:storePath];

// building the path to store transaction logs

NSFileManager *fileManager = [NSFileManager defaultManager];

NSURL *transactionLogsURL = [fileManager
URLForUbiquityContainerIdentifier:nil];

NSString* coreDataCloudContent = [[transactionLogsURL path]
stringByAppendingPathComponent:
@"grocery data"l;

transactionLogsURL = [NSURL fileURLWithPath:coreDataCloudContent];

// Building the options array for the coordinator
NSDictionary* options = @{NSPersistentStoreUbiquitousContentNameKey :
@"com.studiomagnolia.coredata.grocery",
NSPersistentStoreUbiquitousContentURLKey:
transactionLogsURL,
NSMigratePersistentStoresAutomaticallyOption:
Q@YES
b

NSError *error = nil;
[psc lockl];
if (![psc addPersistentStoreWithType:NSSQLiteStoreType

configuration:nil
URL:storeUrl

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

Initializing a Core Data Stack for iCloud ® 9

options:options
error:&error]) {

NSLog(@"Core data error %@, %@", error, [error userInfol);

}
[psc unlock];

// post a notification to tell the main thread

// to refresh the user interface

dispatch async(dispatch _get main queue(), ~{
NSLog(@"persistent store added");
[[NSNotificationCenter defaultCenter]
postNotificationName:
@"com.studiomagnolia.groceryItemsSynchronized"
object:self
userInfo:nil];

3

1)
return persistentStoreCoordinator;

}

Now let’s move on to the last step in modifying Core Data for iCloud: context
creation.

Modifying Context

To update the definition of context and make it iCloud aware, we need to
make these three changes:

1. Choose a concurrency type to initialize the context with.
2. Set the persistent store coordinator.
3. Listen for NSPersistentStoreDidimportUbiquitousContentChangesNotification notifications.

Our choice of concurrency type determines how the context behaves when
it’s accessed concurrently by different threads. We can associate it with a
private queue (which runs in the background) or with the main application
thread (which is used to draw the user interface). In the case of the Grocery
application, I've chosen to update the context with objects that live in the
main thread, so we will initialize the context as follows:

Grocery-chp8-end/Grocery/SMAppDelegate.m

NSManagedObjectContext* moc = [[NSManagedObjectContext alloc]
initWithConcurrencyType:
NSMainQueueConcurrencyType];

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

*10

This line of code declares the context to be queue-based, so to set its proper-
ties, we need to use either the performBlockAndWait: or performBlock: method. For
example, to set the coordinator of the context, we write the following:

[moc performBlockAndWait:"~{

[moc setPersistentStoreCoordinator:coordinator];
13N

Having specified the concurrency type, the last step is to add an observer to
the context to listen for iCloud notifications that the store has been modified.
The name of the notification that we need to listen for is pretty long:

NSPersistentStoreDidImportUbiquitousContentChangesNotification.

This notification will be thrown when there are changes in the content of the
persistent store (for example, when a new item is created or edited).

Pulling all of it together, here is the new definition of context:

Grocery-chp8-end/Grocery/SMAppDelegate.m
- (NSManagedObjectContext *)managedObjectContext

{
if (_managedObjectContext != nil) {
return _managedObjectContext;
}
NSPersistentStoreCoordinator *coordinator =
[self persistentStoreCoordinator];
if (coordinator !'= nil) {
// choose a concurrency type for the context
NSManagedObjectContext* moc = [[NSManagedObjectContext alloc]
initWithConcurrencyType:
NSMainQueueConcurrencyType];
[moc performBlockAndWait:"~{
// configure context properties
[moc setPersistentStoreCoordinator: coordinator];
[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(mergeChangesFromiCloud:)
name:NSPersistentStoreDidImportUbiquitousContentChangesNotification
object:coordinator];
5
_managedObjectContext = moc;
}
return managedObjectContext;
}

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

Initializing a Core Data Stack for iCloud ® 11

The method mergeChangesFromiCloud: that appears in this code is defined as

follows:

Grocery-chp8-end/Grocery/SMAppDelegate.m

- (void)mergeChangesFromiCloud: (NSNotification *)notification {
NSManagedObjectContext* moc = [self managedObjectContext];
NSDictionary *noteInfo = [notification userInfo];

[moc performBlock:"{

NSMutableDictionary *mergingPolicyResult = [NSMutableDictionary dictionary];

[mergingPolicyResult setObject:
forKey:
[mergingPolicyResult setObject:
forKey:
[mergingPolicyResult setObject:
forKey:

noteInfo[NSInsertedObjectsKey]
NSInsertedObjectsKey];
noteInfo[NSUpdatedObjectsKey]
NSUpdatedObjectsKey];

[NSSet set] // Exclude deletions
NSDeletedObjectsKey];

NSNotification *saveNotification =
[NSNotification notificationWithName:notification.name

object:self

userInfo:mergingPolicyResult];

[moc mergeChangesFromContextDidSaveNotification:saveNotification];

[moc processPendingChanges];
E
}

This method is responsible of merging changes notified from iCloud into the
local store, applying the default merge policy whenever conflicts occur. I will

provide more details about custom policies for conflict resolution in Section

8.3, Handling Conflicts, on page ?.

done at startup is finished. You need to listen for that notification. I have set
up the observer at the end of viewDidLoad of SMMasterViewController, as follows:

[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(reloadItems)

name:@"com.studiomagnolia.groceryItemsSynchronized"

object:nil];

The reloadlitems method that appears in the preceding code triggers a reload of

the table and is defined like this:

Grocery-chp8-end/Grocery/SMMasterViewController.m

- (void) reloadItems {

NSLog(@"============ reloading items");

NSError *error = nil;

if (![[self fetchedResultsController] performFetch:&error]) {

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMMasterViewController.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud

*12

NSLog(@"Core data error %@, %@", error, [error userInfo]);

} else {
[self.tableView reloadDatal;

}
}

Finally, we need to refactor applicationDocumentsDirectory in SMAppDelegate as follows
and change its signature in the header accordingly:

Grocery-chp8-end/Grocery/SMAppDelegate.m
- (NSString *)applicationDocumentsDirectory {
return [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) lastObject];

}

Now it’s time test the new Grocery application on some real devices. Install
it on an iPhone or iPad and add a few items with a bunch of tags. Then install
it on a second iOS device and confirm that the items on the first are correctly
propagated. Keep both applications open, change items on one device, and
then look to confirm they've been propagated to the other.

Now that you've learned the basics of iCloud-enabling a Core Data application,
youre ready for something more complex: conflict resolution and related
policies.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/cricloud/code/Grocery-chp8-end/Grocery/SMAppDelegate.m
http://pragprog.com/titles/cricloud
http://forums.pragprog.com/forums/cricloud



