
Extracted from:

3D Game Programming for Kids
Create Interactive Worlds with JavaScript

This PDF file contains pages extracted from 3D Game Programming for Kids,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

3D Game Programming for Kids
Create Interactive Worlds with JavaScript

Chris Strom

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Rashid (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-44-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September, 2013

http://pragprog.com

For Greta, so that she knows she can do
anything.

CHAPTER 10

Project: Collisions
We have a pretty slick game avatar. It moves, it walks, it even turns. But you
may have noticed something odd about our avatar. It can walk through trees.

In this chapter we’ll use tools that are built into our Three.js 3D JavaScript
library to prevent the avatar-in-a-tree effect. (As we’ll see in other chapters,
there are other ways to do the same thing.)

10.1 Getting Started

If it’s not already open in the ICE Code Editor, open the project from Project:
Turning Our Avatar that we named My Avatar: Turning.

Make a copy of our avatar project. From the menu in the ICE Code Editor,
select Make a Copy and enter My Avatar: Collisions as the new project name.

When you’re done with this chapter, you will

• Be able to stop game elements from moving
through each other

• Understand collisions, which are important
in gaming

• Have game boundaries for your avatar

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava
http://forums.pragprog.com/forums/csjava

10.2 Rays and Intersections

The way we prevent our avatar from walking through trees is actually quite
simple. Imagine an arrow pointing down from our avatar.

In geometry, we call an arrow point a ray. A ray is what you get when you
start in one place and point in a direction. In this case, the place is where
our avatar is and the direction is down. Sometimes giving names to such
simple ideas seems silly, but it’s important for programmers to know these
names.

Programmers Like to Give Fancy Names to Simple Ideas

Knowing the names for simple concepts makes it easier to talk to
other people doing the same work. Programmers call these names
patterns.

Now that we have our ray pointing down, imagine circles on the ground around
our trees.

Here is the crazy-simple way that we prevent our avatar from running into a
tree: we don’t! Instead, we prevent the avatar’s ray from pointing through the
tree’s circle.

Chapter 10. Project: Collisions • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava
http://forums.pragprog.com/forums/csjava

If, at any time, we find that the next movement would place the avatar’s ray
so that it points through the circle, we stop the avatar from moving. That’s
all there is to it!

Star Trek II: The Wrath of Khan

It may seem strange, but watching certain science-fiction movies
will make your life easier as a programmer. Sometimes programmers
say odd things that turn out to be quotes from movies. It is not a
requirement to watch or even like these movies, but it can help.

One such quote is from the classic Star Trek II: The Wrath of Khan.
The quote is “He is intelligent, but not experienced. His pattern
indicates two-dimensional thinking.”

The bad guy in the movie was not accustomed to thinking in three
dimensions, and this was used against him. In this case, we want
to think about collisions in only two dimensions even though we
are building a three-dimensional game. We’re thinking about colli-
sions only in two dimensions (X and Z), completely ignoring the
up-and-down Y dimension.

This is yet another example of cheating whenever possible. Real
3D collisions are difficult and require new JavaScript libraries. But
we can cheat and get the same effect in many cases using easier
tricks.

At this point, a picture of what to do next should be forming in your mind.
We’ll need a list of these tree-circle boundaries that our avatar won’t be allowed
to enter. We’ll need to build those circle boundaries when we build the trees,
and detect when the avatar is about to enter a circle boundary. Last, we need
to stop the avatar from entering these forbidden areas.

• Click HERE to purchase this book now. discuss

Rays and Intersections • 9

http://pragprog.com/titles/csjava
http://forums.pragprog.com/forums/csjava

Let’s establish the list that will hold all forbidden boundaries. Just below the
START CODING ON THE NEXT LINE line, add the following.

var not_allowed = [];

Recall from Section 7.5, Listing Things, on page ?, that square brackets are
JavaScript’s way of making lists. Here, our empty square brackets create an
empty list. The not_allowed variable is an empty list of spaces in which the
avatar is not allowed.

Next, find where makeTreeAt() is defined. When we make our tree, we’ll make
the boundaries as well. Add the following code after the line that adds the
treetop to the trunk, and before the line that sets the trunk position.

var boundary = new THREE.Mesh(
new THREE.CircleGeometry(300),
new THREE.MeshNormalMaterial()

);
boundary.position.y = -100;
boundary.rotation.x = -Math.PI/2;
trunk.add(boundary);

not_allowed.push(boundary);

There’s nothing superfancy there. We create our usual 3D mesh—this time
with a simple circle geometry. We rotate it so that it lays flat and position it
below the tree. And, of course, we finish by adding it to the tree.

But we’re not quite done with our boundary mesh. At the end, we push it
onto the list of disallowed spaces. Now every time we make a tree with the
makeTreeAt() function, we’re building up this list. Let’s do something with that
list.

At the very bottom of our code, just above the </script> tag, add the following
code to detect collisions.

function detectCollisions() {
var vector = new THREE.Vector3(0, -1, 0);
var ray = new THREE.Ray(marker.position, vector);
var intersects = ray.intersectObjects(not_allowed);
if (intersects.length > 0) return true;
return false;

}

This function returns a Boolean—a yes-or-no answer—depending on whether
the avatar is colliding with a boundary. This is where we make our ray to see
if it points through anything. As described earlier, a ray is the combination
of a direction, or vector (down in our case), and a point (in this case, the

Chapter 10. Project: Collisions • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava
http://forums.pragprog.com/forums/csjava

avatar’s marker.position). We then ask that ray if it goes through (intersects) any
of the not_allowed objects. If the ray does intersect one of those objects, then
the intersects variable will have a length that is greater than zero. In that case,
we have detected a collision and we return true. Otherwise, there is no collision
and we return false.

Collisions are a tough problem to solve in many situations, so you’re doing
great by following along with this. But we’re not quite finished. We can now
detect when an avatar is colliding with a boundary, but we haven’t actually
stopped the avatar yet. Let’s do this in the keydown listener.

In the keydown listener, if an arrow key is pressed, we change the avatar’s
position.

if (code == 37) { // left
marker.position.x = marker.position.x-5;
is_moving_left = true;

}

Such a change might mean that the avatar is now in the boundary. If so, we
have to undo the move right away. Add the following code at the bottom of
the keydown event listener (just after the if (code == 70)).

if (detectCollisions()) {
if (is_moving_left) marker.position.x = marker.position.x+5;
if (is_moving_right) marker.position.x = marker.position.x-5;
if (is_moving_forward) marker.position.z = marker.position.z+5;
if (is_moving_back) marker.position.z = marker.position.z-5;

}

Read through these lines to make sure you understand them. That bit of code
says if we detect a collision, then check the direction in which we’re moving. If
we’re moving left, then reverse the movement that the avatar just did—go back
in the opposite direction the same amount.

With that, our avatar can walk up to the tree boundaries, but go no farther.

• Click HERE to purchase this book now. discuss

Rays and Intersections • 11

http://pragprog.com/titles/csjava
http://forums.pragprog.com/forums/csjava

Yay! That might seem like some pretty easy code, but you just solved a very
hard problem in game programming.

10.3 The Code So Far

In case you would like to double-check the code in this chapter, it’s included
in Section A1.10, Code: Collisions, on page ?.

10.4 What’s Next

Collision detection in games is a really tricky problem to solve, so congratula-
tions on getting this far. It gets even tougher once you have to worry about
moving up and down in addition to left, right, back, and forward. But the
concept is the same. Usually we rely on code libraries written by other people
to help us with those cases. In some of the games we’ll experiment with
shortly, we’ll use just such a code library.

But first we’ll put the finishing touch on our avatar game. In the next chapter
we’ll add sounds and scoring. Let’s get to it!

Chapter 10. Project: Collisions • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava
http://forums.pragprog.com/forums/csjava

