
Extracted from:

3D Game Programming for Kids,
Second Edition

Create Interactive Worlds with JavaScript

This PDF file contains pages extracted from 3D Game Programming for Kids, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

3D Game Programming for Kids,
Second Edition

Create Interactive Worlds with JavaScript

Chris Strom

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Adaobi Obi Tulton
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-270-1
Book version: P1.0—July 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Point Light
To increase the realism, let’s add a “point light,” which is kind of like a light
bulb. Add the code for our point light below the donut code.

var point = new THREE.PointLight('white', 0.8);
point.position.set(0, 300, -100);
scene.add(point);

We’re positioning the light above and behind the donut. The point light is bright,
but not too bright at 0.8. The result should be a pretty cool-looking donut:

One weird thing about programming with 3D lights is that the light is not
coming from an object in the scene. We positioned the source of the light at
X-Y-Z coordinates of (0, 300, -100). The light comes from here, but there’s no
bulb to be seen.

It often helps to see a bulb, so let’s add a glowing white bulb to the point light.
The light is already there, so this is just a marker—a phony bulb. Add the
phony bulb below the real point light code.

var shape = new THREE.SphereGeometry(10);
var cover = new THREE.MeshPhongMaterial({emissive: 'white'});
var phonyLight = new THREE.Mesh(shape, cover);
point.add(phonyLight);

Just because it is fake, doesn’t mean that we have to make it look fake. We
give it an emissive color of bright white so that it emits white—kind of like a
real light bulb.

Shininess
The donut is pretty cool looking already. Next, let’s play with the shininess
of the material wrapping the donut. In 3D programming, the shininess color
is called the specular color. The specular color combines with the light shining

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava2
http://forums.pragprog.com/forums/csjava2

on it. If a bright light shines on a dark specular color, it produces very little
shine. This is how the material looks now. If we make a specular color brighter,
then a bright light combines to produce shininess.

Set the specular color of our donut’s material just after we create the cover.

var shape = new THREE.TorusGeometry(50, 20, 8, 20);
var cover = new THREE.MeshPhongMaterial({color: 'red'});
cover.specular.setRGB(0.9, 0.9, 0.9);➤

var donut = new THREE.Mesh(shape, cover);
donut.position.set(0, 150, 0);
scene.add(donut);

We are using red-green-blue colors like we did to build random colors back
in Chapter 5, Functions: Use and Use Again, on page ?. But here, we’re not
making colors, just variations of gray. When all of the RGB values are the
same, you get gray. When they’re near 0, an almost black gray is produced.
When they are all close to 1, you get a very light, almost white gray.

And when that specular color is light, we see more of the shine as shown in
the figure on page 9.

We’ve now met all the different kinds of color that work together to add realism
to 3D objects. Let’s have a look at something even cooler: shadows.

Shadows
Drawing shadows is a lot of work for computers, so don’t go crazy with them.
Since they are so much work, they’re disabled at first. We have to carefully
work through each object that needs a shadow—and turn on shadows for the
scene and light as well.

The first thing we need is some ground to see a shadow—we won’t see a
shadow unless the shadow falls on something. Add the code for the ground
below the code for the donut, and above the light code.

var shape = new THREE.PlaneGeometry(1000, 1000, 10, 10);
var cover = new THREE.MeshPhongMaterial();
var ground = new THREE.Mesh(shape, cover);
ground.rotation.x = -Math.PI/2;
scene.add(ground);

That creates a plane, rotates it flat, and adds it to the scene—without any
shadows.

To enable shadows, we follow these four steps:

1. Enable shadows in the renderer.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava2
http://forums.pragprog.com/forums/csjava2

2. Enable shadows in a light.

3. Enable shadows in the object that casts a shadow.

4. Enable shadows in the object on which the shadow falls.

3D code will not even bother about shadows unless they are enabled in the
renderer. To do so, set the shadowMap.enabled property in the renderer, which
is above the START CODING line.

• Click HERE to purchase this book now. discuss

Shadows • 9

http://pragprog.com/titles/csjava2
http://forums.pragprog.com/forums/csjava2

var renderer = new THREE.WebGLRenderer({antialias: true});
renderer.shadowMap.enabled = true;➤

renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

Unless we say otherwise, lights do not cast shadows. So let’s enable shadows
from our point light.

var point = new THREE.PointLight('white', 0.8);
point.position.set(0, 300, -100);
point.castShadow = true;➤

scene.add(point);

Next, we want our donut to cast a shadow, so enable the castShadow property
on the donut.

var shape = new THREE.TorusGeometry(50, 20, 8, 20);
var cover = new THREE.MeshPhongMaterial({color: 'red'});
cover.specular.setRGB(0.9, 0.9, 0.9);
var donut = new THREE.Mesh(shape, cover);
donut.position.set(0, 150, 0);
donut.castShadow = true;➤

scene.add(donut);

Last, we tell the ground that it receives a shadow.

var shape = new THREE.PlaneGeometry(1000, 1000, 10, 10);
var cover = new THREE.MeshPhongMaterial();
var ground = new THREE.Mesh(shape, cover);
ground.rotation.x = -Math.PI/2;
ground.receiveShadow = true;➤

scene.add(ground);

With that, we should have a shadow for our spinning donut. If you don’t see
a shadow, check the JavaScript console and make sure that you’ve followed
each of the four steps required for shadows.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/csjava2
http://forums.pragprog.com/forums/csjava2

Four steps might seem like a lot, but shadows require a lot of work by the
computer. If every light makes shadows and every object casts a shadow and
every object can have a shadow fall on it…well, then the computer is going
to use all of its power drawing shadows and have nothing left for the user to
actually play games.

Let’s Play!

Lights and materials have a lot of properties that interact with
each other. The best way to understand them is to play! Change
the color of the point light to purple. What happens if the light is
blue, but the donut is red? Change the amount of specular RGB
in the donut—first keeping all three numbers the same and then
making the green and blue values (the second and third values) 0.

• Click HERE to purchase this book now. discuss

Shadows • 11

http://pragprog.com/titles/csjava2
http://forums.pragprog.com/forums/csjava2

