
Chapter 5

Take the Plunge

As we discussed in the last chapter, widgets are the building blocks

of GUI applications. With QtRuby, we can use widgets from the

toolkit and combine them into more create complex widgets, encap-

sulating their functionality.

5.1 Your First Custom Widget
When creating your own widget classes, it is important to

remember not to give them names in the Qt namespace, such

as Qt::MyWidget. While not technically wrong, classes

you create in this namespace could conflict with existing

classes already in the namespace, causing erratic program

behavior.

Let’s take a look at a more complicated program, in which we create

our own custom widget. See if you can figure out what’s going on.

File 2require 'Qt'

class MyWidget < Qt::Widget
def initialize(parent=nil)

super(parent)
@label = Qt::Label.new(self)
@button = Qt::PushButton.new(self)
@layout = Qt::VBoxLayout.new(self)
@layout.addWidget(@label)
@layout.addWidget(@button)
@clicked_times = 0
@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")
@button.setText("My Button")

end
end
a = Qt::Application.new(ARGV)
mw = MyWidget.new
a.setMainWidget(mw)
mw.show
a.exec

Some of the concepts discussed before are repeated in this code.

However, there’s some new stuff. First, note that we create a new

widget, MyWidget, from an existing widget class.

File 2class MyWidget < Qt::Widget

When creating a new GUI widget, it is important to inherit from a

base QtRuby widget class such as Qt::Widget. By doing so, we gain

CHAPTER 5. TAKE THE PLUNGE YOUR FIRST CUSTOM WIDGET 34

the built in methods and properties that all widgets should have,

such as a size.
Since our goal is to make a new widget that is the

combination of a couple of other widgets, we base our

widget off of Qt::Widget. If we wanted to extend an

already existing widget, we could have based our new class

directly off of it instead.

In the next part, we define the initialization code for our widget.

File 2def initialize(parent=nil)

super(parent)
@label = Qt::Label.new(self)
@button = Qt::PushButton.new(self)
@layout = Qt::VBoxLayout.new(self)

The first thing we do in our initializer is make a call to super(). This

step is very important. Calling super() explicitly runs the initializer

in our inherited class (Qt::Widget in this case). Setup code defined

within our base class initializer will only be executed with a call to

super().
Note: Supplying the argument list to super() is optional in

Ruby, as long as the superclass has the same argument list

as the subclass.

We also create some child widgets in our MyWidget class. In this

case, we are creating a Qt::Label, Qt::PushButton, Qt::VBoxLayout.

Okay, we fibbed a little. Some items that get used from the

toolkit aren’t technically widgets. In the example above,

Qt::Label and Qt::PushButton are both widgets,

because they inherit from the Qt::Widget class. However,

items such as the Qt::VBoxLayout class don’t inherit

from Qt::Widget (because they don’t need to).

When creating new widgets, we pass self as their parent argument.

This tells each of the new widgets that their parent is the instance

of the widget currently being defined.

In the next section, we add our child widgets to the layout:

File 2@layout.addWidget(@label)

@layout.addWidget(@button)

We put our widgets into the layout because we want to make use of

the layout’s ability to automatically resize and maintain our widgets

within the program boundaries.

Finally, we put a few finishing touches on our widgets:

File 2@clicked_times = 0

@label.setText("The button has been clicked " +
@clicked_times.to_s + " times")

@button.setText("My Button")

Report erratum

CHAPTER 5. TAKE THE PLUNGE WIDGET GEOMETRY 35

Figure 5.1: Screenshot of Example 2

Both the Qt::Label and Qt::PushButton classes have setText() methods

that, well, set the text displayed on the widget.

With our MyWidget widget class fully defined, we can finally create a

Qt::Application to display the widget on screen.
In these examples, we could have gotten away with not

creating a layout, but the widgets would not change size if

we resized the application window and they may have

overlapped each other. This is usually not desirable behavior.

File 2a = Qt::Application.new(ARGV)

mw = MyWidget.new
a.setMainWidget(mw)
mw.show
a.exec

Finally, we can run the code and see our program pop up a window

like that in Figure 5.1

5.2 Widget Geometry

Qt::Widget classes provide several functions used in dealing with the

widget geometry. The methods width() and height() return the width

and height of the widget, in pixels. The width and height values do

not take into account a window frame which may surround a top

level widget.

The method size(), which returns a Qt::Size object, contains the same

information encapsulated inside of a Qt::Size object.

Report erratum

CHAPTER 5. TAKE THE PLUNGE WIDGET GEOMETRY 36

Figure 5.2: Widget Geometry

Another method, geometry() returns a Qt::Rect object containing

both the widget’s size and relative position within its parent. The

position is defined in x and y coordinates, with x being the pixel dis-

tance from the left side of the parent and y being the pixel distance

from the top of the parent.
Since some methods take into account window frame

geometry (for top level widgets) and other don’t, we

recommend reading over Qt’s Window Geometry

documentation. It also includes tips on how to save and

restore a widget’s geometry between application sessions.

Other methods include: x(), y(), and pos() which also return the

widget’s relative position from within its parent. These methods,

however, do take into account a window frame if the widget happens

to be a top level widget.

Changing Geometry

It is possible to move a widget around within its parent using the

methods move(int x,int y) and move(Qt::Point). You can also resize a

widget using the methods resize(int x,int y) and resize(Qt::Size).

To perform both operations at the same time, use the methods set-

Geometry(int x,int y,int h, int w) or setGeometry(Qt::Rect).

Report erratum

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 37

5.3 Understanding Layouts

As we’ve seen, we can set the widget size and position within its par-

ent manually. However, manual geometry management of widgets is

tough. Each application is only given a select amount of screen real

estate to work with and each widget in that application has to have

its geometry managed. If a parent widget gets resized smaller, for

example, at least one child will need to be resized as well, or some

clipping of the child will occur.

Fortunately, QtRuby comes with a rich set of layout management

classes which greatly simplify this task.

The class Qt::Layout is at the heart of layout management. Qt::Layout

provides a very robust interface for management of widget layout.

In many cases, there is no need for the complex interface provided

by Qt::Layout. For the simpler cases, QtRuby provides three con-

venience classes based on Qt::Layout: Qt::HBoxLayout, Qt::VBoxLayout,

and Qt::GridLayout.
The Qt Layout Classes guide gives some more insight into

the use of these classes. Layout classes

The BoxLayout classes handle laying out widgets in a straight line

(vertically with Qt::VBoxLayout or horizontally with Qt::HBoxLayout). To

utilize a BoxLayout class, simply create an instance of whichever lay-

out is desired and use its addWidget() method to add widgets into

the layout.

Alternatively, the Qt::GridLayout allows you to place widgets into a

grid as shown in Figure 5.4, on the next page.

w = Qt::Widget.new(nil)
gl = Qt::GridLayout.new(3,4) # 3 rows by 4 columns
put w into the first row and column
gl.addWidget(w, 0, 0)

Report erratum

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 38

Figure 5.3: Layout class inheritance diagram

Figure 5.4: Qt::GridLayout Example

Report erratum

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 39

Figure 5.5: Layout and Sublayout Example

Sublayouts

Layouts can also have sublayouts contained within them. For exam-

ple this code creates a sublayout as shown on Figure 5.5 .

File 10@layout = Qt::HBoxLayout.new

@sublayout = Qt::VBoxLayout.new
@w1 = QWidget.new
@w2 = QWidget.new
@w3 = QWidget.new
@sublayout.addWidget(w1)
@sublayout.addWidget(w2)
@layout.addLayout(@sublayout)
@layout.addWidget(@w3)

In Figure 5.6, on the next page we demonstrate why sublayouts are

convenient. On the left side we created a Qt::VBoxLayout contain-

ing three Qt::CheckBoxes. Then we nested this layout inside of a

Qt::HBoxLayout and also put in a Qt::Dial. As you can see, the sublay-

out allows us to group related items together in a logical way and

Report erratum

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 40

Figure 5.6: A Layout with a Nested Sublayout

maintain the size and spacing policies we desire.

Layout properties

All layouts have two fundamental properties, margin and spacing.

These are shown on Figure 5.7, on the following page. Spacing rep-

resents the pixel space between each of the items within the lay-

out. Margin represents an outer ring of pixel space surrounding

the layout. Both are settable properties using the setMargin() and

setSpacing() methods.

In lieu of adding a widget or a sublayout into a Qt::Layout, there are

Report erratum

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 41

Figure 5.7: Layout Margin and Spacing

some other interesting additions. addSpacing() allows you to add

a fixed amount of space directly in the widget. addStretch() adds a

stetchable space in the widget.

Sizing up the situation

Layouts only define the placement of objects, not the space that they

are allotted. From an outside perspective it may seem as though

all of the widgets should take up a proportionate amount of space

based on how many other widgets are in the layout. This layout

style, though, is not always ideal.
We highly recommend using the layout classes over manual

manipulation of widget geometry. Enter Qt::SizePolicy. This class, which is also a settable property of

Qt::Widget (using the setSizePolicy() method), contains the informa-

tion a widget uses to determine the amount of space it will take up

inside a layout. When coupled with all of the other widgets in the

layout, the SizePolicies are all calculated and a final overall layout is

achieved.

Each size policy utilizes a calculated geometry called a sizeHint(). The
The sizeHint() method returns a Qt::Size object, which is

nothing more than an encapsulated set of width and height

properties. Report erratum

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 42

sizeHint()is a method built into Qt::Widget which calculates the rec-

ommended size of the widget. A sizeHint() is calculated based on the

design of the widget. For example, a Qt::Label’s sizeHint() is calculated

based on the text that is written on the label. This is to help ensure

that all of the text always fits on the Qt::Label.

irb(main):001:0> require 'Qt'
=> true
irb(main):002:0> app = Qt::Application.new(ARGV)
=> #<Qt::Application:0xb6adfb24 name="irb">
irb(main):003:0> Qt::Label.new("Blah",nil).sizeHint
=> #<Qt::Size:0xb6adc44c width=30, height=17>
irb(main):004:0> Qt::Label.new("BlahBlahBlahBlahBlah",nil).sizeHint
=> #<Qt::Size:0xb6ad86bc width=142, height=17>

The above shows that a sizeHint() for a Qt::Label is dependent on the

text being displayed on the label.

There are seven types of size policies:

These Qt::SizePolicy types are set independently for both the horizon-

tal and vertical directions.

Report erratum

