
Extracted from:

Modular Java
Creating Flexible Applications

with OSGi and Spring

This PDF file contains pages extracted from Modular Java, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Craig Walls.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-40-9

ISBN-13: 978-1934356-40-1

Printed on acid-free paper.

P1.0 printing, May 2009

Version: 2009-6-18

http://www.pragprog.com

CONSUMING OSGI SERVICES 102

For brevity’s sake, I’ve cut out most of the output produced when run-

ning the test. But the punch line is the same: the test passes. Therefore,

we know that our index service is working correctly (or at least within

the expectations of the shouldIndexAndFindAJarFileObject() method). As

we continue to develop the application, we’ll know whether the changes

we make break the index service, because this test will be the first to

complain.

Our application is really starting to take shape. In this chapter, we

added another bundle to the mix—this time with a service published

in the OSGi service registry. And even though we haven’t yet developed

any bundles that consume that service, we’ve been able to test drive it

with an integration test driven by Pax Exam.

But a service isn’t any good unless someone uses it. Let’s build some-

thing that uses the index service.

5.3 Consuming OSGi Services

As you’ll recall from Chapter 3, Dude, Where’s My JAR?, on page 47,

the index service will ultimately have two consumers: the web front end

and the repository spider. The web front end will use the index service

to look search for JAR files that meet a user’s criteria. The spider will

use the index service to stock the search engine’s index with the JAR

files that it finds in Maven repositories. We’ll get to the web front end

later in Chapter 7, Creating Web Bundles, on page 131. But we’ll go

ahead and build the spider now.

First things first. . . the repository spider represents another module

of our application and thus will be contained within its own bundle.

Therefore, we’ll need to create a new bundle project. Once again, we

call on the pax-create-bundle script:

dwmj% pax-create-bundle -g com.dudewheresmyjar -p dwmj.spider -n spider \

? -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

...

[INFO] Archetype created in dir: /Users/wallsc/Projects/projects/dwmj/spider

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 8 seconds

[INFO] Finished at: Sat Mar 07 16:43:22 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmj%

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 103

As usual, pax-create-bundle adds an example service, service interface,

and activator to the generated project. Go ahead and remove them, and

we’ll be ready to develop the spider bundle.

Using Service Trackers

The first thing we’ll need to do is to create the spider implementation

class. Spidering a Maven repository is quite involved. For the purposes

of our application, this involves several steps such as parsing POM files,

reading a JAR file’s contents, and extracting information from a JAR’s

META-INF/MANIFEST.MF file. For the most part, however, the functionality

of the spider has nothing to do with OSGi. Therefore, in the interest of

saving space and to keep our focus on consuming services, I’m going

to show only the parts of the spider that are pertinent to the topic of

consuming OSGi services.1

Download dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

package dwmj.spider.internal;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.URL;

import javax.swing.text.MutableAttributeSet;

import javax.swing.text.html.HTML;

import javax.swing.text.html.HTMLEditorKit;

import javax.swing.text.html.HTML.Tag;

import javax.swing.text.html.HTMLEditorKit.Parser;

import javax.swing.text.html.HTMLEditorKit.ParserCallback;

import org.osgi.util.tracker.ServiceTracker;

import dwmj.domain.JarFile;

import dwmj.index.IndexService;

public class MavenSpider implements Runnable {

private JarFilePopulator[] jarFilePopulators = new JarFilePopulator[] {};

private final ServiceTracker indexServiceTracker;

private String repositoryUrl;

private boolean active;

public MavenSpider(ServiceTracker indexServiceTracker) {

this.indexServiceTracker = indexServiceTracker;

}

1. Remember, you can download the complete source code from

http://www.pragprog.com/titles/cwosg/source_code.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://www.pragprog.com/titles/cwosg/source_code
http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 104

public void setRepositoryUrl(String repositoryUrl) {

this.repositoryUrl = repositoryUrl;

}

// ...

private void handleJarFile(String jarUrl) {

// ...

IndexService indexService =

(IndexService) indexServiceTracker.getService();

if(indexService != null) {

indexService.addJarFile(jarFile);

}

}

// ...

}

The MavenSpider class is constructed by passing in a service tracker.

You’re probably wondering what this odd little class is for. Ultimately,

doesn’t MavenSpider need the index service? Why not just give it the

index service straightaway? Why all of the indirection?

OSGi services are a tricky bunch. They can come and go at any time.

There’s no way to be sure that if we give an index service to the Maven-

Spider at creation that the index service will still be around when we’re

ready to use it. For that matter, there’s no guarantee that the index

service is even available when we create the MavenSpider.

Rather than putting MavenSpider in the awkward position of having to

manage the comings and goings of the index service, we will use a ser-

vice tracker. Service trackers contain all of the magic to keep track of

whether a service is available, and they hide away the complexity of

dealing with the OSGi service registry through lower-level APIs. Maven-

Spider is given a service tracker that keeps track of the index service

and, upon request through the getService() method, provides the index

service so that we can add a JarFile to the index.

Even though the service tracker abstracts away any unpleasantness

of dealing with the service registry’s low-level APIs, getService() could

still return null if the service is unavailable. So, we will need to check

for a null service before calling addJarFile(). But if you’d rather wait for

the service to become available, we could call waitForService() instead of

getService().

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 105

Caution: Don’t Dawdle in an Activator

The waitForService() method will block until a service is avail-
able or the specified timeout has passed. For that reason, avoid
specifying a long timeout when using waitForService() in an acti-
vator’s start() or stop() method. If the service isn’t available, the
bundle will get stuck in STARTING or STOPPING state while tran-
sitioning to or from an ACTIVE state.

Download dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

try {

IndexService indexService =

(IndexService) indexServiceTracker.waitForService(10000);

// ...

}

catch (InterruptedException e) {

// handle exception

}

Unlike getService(), which returns immediately, waitForService() will wait

for a service to become available, up to a specified timeout (in millisec-

onds). In this case, waitForService() will wait up to ten seconds for the

service to become available before giving up. A timeout of zero tells wait-

ForService() to wait indefinitely.

Now that we’ve spent some time looking at how to use a service tracker

to look up a service from the OSGi registry, you’re probably wondering

where that service tracker comes from. For the answer to that, look no

further than SpiderActivator, the spider bundle’s activator:

Download dwmj/spider/src/main/java/dwmj/spider/internal/SpiderActivator.java

package dwmj.spider.internal;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

import dwmj.index.IndexService;

public final class SpiderActivator implements BundleActivator {

private ServiceTracker indexServiceTracker;

private static String[] REPOSITORIES = new String[] {

"http://www.dudewheresmyjar.com/repo/" };

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/SpiderActivator.java
http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 106

private static JarFilePopulator[] POPULATORS = new JarFilePopulator[] {

new PomBasedJarFilePopulator(), new JarContentBasedJarFilePopulator()

};

private final MavenSpider[] spiders = new MavenSpider[REPOSITORIES.length];

public void start(BundleContext context) throws Exception {

indexServiceTracker = new ServiceTracker(context, IndexService.class

.getName(), null);

indexServiceTracker.open();

for (int i = 0; i < REPOSITORIES.length; i++) {

MavenSpider spider = new MavenSpider(indexServiceTracker);

spider.setRepositoryUrl(REPOSITORIES[i]);

spider.setJarFilePopulators(POPULATORS);

Thread thread = new Thread(spider);

thread.start();

}

}

public void stop(BundleContext context) throws Exception {

for (int i = 0; i < spiders.length; i++) {

spiders[i].stop();

}

indexServiceTracker.close();

}

}

SpiderActivator’s main job is to create an instance of MavenSpider for each

Maven repository that will be crawled (in this case, an artificial repos-

itory). But first, it creates a service tracker to track the index service.

The constructor for ServiceTracker takes three parameters:

• The bundle context

• The name of the service to be tracked

• An optional service tracker customizer (org.osgi.util.tracker.

ServiceTrackerCustomizer)

Since we need to track the index service, we pass in the bundle context

and the fully qualified name of the IndexService interface.

As for the third parameter, ServiceTrackerCustomizer is an odd little inter-

face that lets us hook into the service tracker to monitor when services

are added, removed, or modified. We won’t need a service tracker cus-

tomizer, though—so we’ll give it a null service tracker customizer.

The last thing that the activator does is create a MavenSpider instance

for each of the repositories and sends them off to crawl. So that the

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 107

Please Don’t Crawl IBiblio

As a consequence of crawling a repository, the spider gener-
ates a lot of traffic. Maven repositories are geared toward serv-
ing occasional requests for Java libraries but may not be pre-
pared to handle a barrage of requests from our spider.

Please be a good citizen, and do not configure the spider to
crawl the central repository at IBiblio or any other repository
that you do not have express permission to crawl. Or better yet,
set up a local repository, and set the spider bundle to crawl it.

start() method can finish without waiting for the crawlers (Maven repos-

itories are large—it might take awhile), SpiderActivator fires off a thread

for each spider to crawl in.

The spider bundle is almost complete. The only thing left to do is to

register SpiderActivator as the bundle’s activator by adding a line in the

BND instruction file:

Download dwmj/spider/osgi.bnd

Bundle-Activator: dwmj.spider.internal.SpiderActivator

All of the bundle’s pieces are in place. We’re almost ready to build and

deploy the spider bundle and watch it crawl a repository.

Deploying the Spider Bundle

There’s only one more thing to do before we can build the spider bundle.

Since the spider directly depends on classes and interfaces from the

domain and index bundles, we’ll need to make sure that they’re in the

compile-time classpath. For that, we’ll use Pax Construct’s pax-add-

dependency script. First, we’ll add the domain bundle as a dependency

to the spider bundle:

spider% pax-import-bundle -g com.dudewheresmyjar -a domain -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.spider [dwmj.spider]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.domain [dwmj.domain] as dependency to

com.dudewheresmyjar:spider:bundle:1.0.0-SNAPSHOT

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmj/spider/osgi.bnd
http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 108

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Sat Mar 07 21:52:40 CST 2009

[INFO] Final Memory: 8M/18M

[INFO] --

spider%

Then we’ll add the index bundle:

spider% pax-import-bundle -g com.dudewheresmyjar -a index -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.spider [dwmj.spider]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.index [dwmj.index] as dependency to

com.dudewheresmyjar:spider:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Sat Mar 07 21:53:00 CST 2009

[INFO] Final Memory: 8M/18M

[INFO] --

spider%

The pax-add-dependency script should have added the domain and in-

dex bundles as <dependency>s in the spider bundle’s pom.xml file. Now

that the spider bundle is set dependency-wise, let’s try building it:

spider% mvn install

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.spider [dwmj.spider]

[INFO] task-segment: [install]

[INFO] --

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 9 seconds

[INFO] Finished at: Sat Mar 07 22:01:03 CST 2009

[INFO] Final Memory: 14M/31M

[INFO] --

spider%

Good deal! The spider bundle was successfully built.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 109

Now we’re ready to provision it and see whether it works:

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

6 ACTIVE org.compass-project.compass_2.1.1

7 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

8 ACTIVE com.dudewheresmyjar.spider_1.0.0.SNAPSHOT

osgi>

After running pax-provision and using the Equinox ss command, you’ll

see that the spider bundle was installed and started. Moreover, if you

issue the bundle command to view the spider bundle’s information. . .

osgi> bundle 8

initial@reference:file:com.dudewheresmyjar.spider_1.0.0.SNAPSHOT.jar/ [8]

Id=8, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmj/runner/

equinox/org.eclipse.osgi/bundles/8/data

No registered services.

Services in use:

{dwmj.index.IndexService}={service.id=24}

Exported packages

dwmj.spider.impl; version="1.0.0.SNAPSHOT"[exported]

Imported packages

dwmj.domain; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [5]>

dwmj.index; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [7]>

javax.swing.text; version="0.0.0"<System Bundle [0]>

javax.swing.text.html; version="0.0.0"<System Bundle [0]>

javax.xml.parsers; version="0.0.0"<System Bundle [0]>

javax.xml.xpath; version="0.0.0"<System Bundle [0]>

org.osgi.framework; version="1.4.0"<System Bundle [0]>

org.osgi.util.tracker; version="1.3.3"<System Bundle [0]>

org.w3c.dom; version="0.0.0"<System Bundle [0]>

No fragment bundles

Named class space

com.dudewheresmyjar.spider; bundle-version="1.0.0.SNAPSHOT"[provided]

No required bundles

osgi>

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

CONSUMING OSGI SERVICES 110

. . . you’ll find that the spider bundle uses the service identified as dwmj.

index.IndexService (look under the Services in use: header). Also, if you

wait a moment or two, you’ll see the spider interacting with the index

service as it finds JAR files in the Maven repository.

Finally, as one more bit of proof that the index service is indexing JarFiles

on behalf of the spider, go dig around in the index directory (probably

/tmp/dudeindex on Unix or c:\temp\dudeindex on Windows). This direc-

tory contains a set of files that comprise a Lucene index. While the

spider is running, the selection of files and the sizes of those files will

fluctuate, indicating that new entries are being written to the index.

In this chapter, we’ve developed two of the central bundles of our appli-

cation. The index bundle publishes a service through which consumers

can add and search for JarFile entries in an index. The spider bundle is

one such consumer of the index service, crawling a Maven repository

and submitting what it finds to the index service for indexing.

We’ll write some code to search that index when we develop the web

front end in Chapter 7, Creating Web Bundles, on page 131. But before

we get there, let’s push rewind on the project and see how Spring

Dynamic Modules for OSGi (Spring-DM) brings a POJO-based program-

ming model to OSGi, simplifying some of the OSGi plumbing code we’ve

written so far.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Modular Java’s Home Page

http://pragprog.com/titles/cwosg

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cwosg.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/cwosg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cwosg
www.pragprog.com/catalog

