
Extracted from:

Modular Java
Creating Flexible Applications

with OSGi and Spring

This PDF file contains pages extracted from Modular Java, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Craig Walls.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-40-9

ISBN-13: 978-1934356-40-1

Printed on acid-free paper.

P1.0 printing, May 2009

Version: 2009-6-18

http://www.pragprog.com

INJECTING SERVICES INTO CONSUMERS 124

How to Not Publish the Spring Context as a Service

If you’d rather not have a bundle’s Spring context published as
a service, you’ll need to say so with the Spring-Context: header:

Spring-Context: META-INF/spring/*.xml;publish-context:=false

By setting the publish-context directive to false, we’re asking
Spring-DM to go ahead and load the Spring context using XML
files in META-INF/spring, but not to publish the context in the
OSGi service registry.

baker’s dozen of interfaces, any of which you can use to retrieve the

bundle’s Spring context.

Now that we’ve converted the index bundle to use Spring-DM, let’s turn

our attention to the spider bundle to see whether Spring-DM can help

us eliminate all of the code that we wrote to consume the index service.

6.3 Injecting Services into Consumers

As you’ll recall, there’s much more to consuming a service than pub-

lishing it. A service consumer must carefully deal with the transitivity

of services to make sure that it’s not trying to use a service that has

gone away or that has been replaced with a newer version. All of that

service management resulted in a lot of code in both the spider bundle’s

activator and in the spider implementation class.

Spring-DM was able to eliminate OSGi-specific code in our index bun-

dle. Can it do the same for the spider bundle? You bet! In fact, as

you’ll soon see, consuming a service with Spring-DM isn’t much dif-

ferent from publishing a service.

First things first. . . just as with the index bundle, we’re no longer going

to need the bundle activator for the spider bundle. So, let’s go ahead

and ditch it:

dwmjs% cd spider

spider% rm src/main/java/dwmj/spider/impl/SpiderActivator.java

Be sure to remove the Bundle-Activator: entry from osgi.bnd, too.

Now that the spider’s bundle activator is gone, we no longer have a way

to give the MavenSpider a service tracker to look up the index service.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

INJECTING SERVICES INTO CONSUMERS 125

But that’s OK, because instead of giving MavenSpider a way to get the

index service, we’re going to inject the index service into MavenSpider:

Download dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

public class MavenSpider {

private static final Logger LOGGER = Logger.getLogger("MavenSpider");

private JarFilePopulator[] jarFilePopulators = new JarFilePopulator[] {};

private String repositoryUrl;

private boolean active = true;

private IndexService indexService;

public MavenSpider(IndexService indexService) {

this.indexService = indexService;

}

}

We’ve traded a ServiceTracker for a reference to an IndexService. Actu-

ally, we’re going to inject MavenSpider with a proxy to the index service

(that automatically handles the transitive nature of services). But for all

intents and purposes, you can pretend that it’s the real index service—

MavenSpider won’t know the difference.

Notice that MavenSpider no longer implements java.lang.Runnable. Origi-

nally, we had to start MavenSpider in a separate thread so that it would

not hold up the spider bundle from starting. But now Spring is going to

start MavenSpider, so it no longer needs to implement Runnable.

There’s just one more tweak we must make to MavenSpider to make it

ready for Spring-DM. Now that we’re injecting an IndexService reference

into MavenSpider, we’ll need to change it to just use the IndexService and

not try to look it up from the ServiceTracker. Previously, MavenSpider had

a snippet of code that looked like this:

Download dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

if (jarFile.isIndexable()) {

IndexService indexService =

(IndexService) indexServiceTracker.getService();

if(indexService != null) {

indexService.addJarFile(jarFile);

}

}

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://www.pragprog.com/titles/cwosg

INJECTING SERVICES INTO CONSUMERS 126

But with the ServiceTracker gone, it’s much simpler:

Download dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

if(jarFile.isIndexable()) {

indexService.addJarFile(jarFile);

}

Awesome! We’ve managed to turn MavenSpider into a POJO, eliminating

all hints of the OSGi API. To wrap up the conversion of the spider bun-

dle to use Spring-DM, we need to wire MavenSpider as a Spring bean,

injecting it with a reference to the index service. First, we’ll configure a

reference to the index service:

Download dwmjs/spider/src/main/resources/META-INF/spring/spider-osgi.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<reference id="indexService"

interface="dwmj.index.IndexService" />

</beans:beans>

The <reference> element isn’t much different from the <service> ele-

ment, only in reverse. The interface= attribute tells Spring to look up

a service from the OSGi service registry with the dwmj.index.IndexService

interface. The id= attribute is effectively the flipside of the <service> ele-

ment’s ref= element—but, instead of referencing another Spring bean,

the id= attribute gives the index service proxy a name with which we

can inject it into the MavenSpider.

Speaking of injecting the index service into the MavenSpider, let’s wire

up the spider bean:

Download dwmjs/spider/src/main/resources/META-INF/spring/spider-context.xml

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean class="dwmj.spider.internal.MavenSpider"

init-method="run" destroy-method="stop">

<constructor-arg ref="indexService" />

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/resources/META-INF/spring/spider-osgi.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/resources/META-INF/spring/spider-context.xml
http://www.pragprog.com/titles/cwosg

INJECTING SERVICES INTO CONSUMERS 127

<property name="repositoryUrl" value="http://repo2.maven.org/maven2/" />

<property name="jarFilePopulators">

<list>

<bean class=

"dwmj.spider.internal.PomBasedJarFilePopulator" />

<bean class=

"dwmj.spider.internal.JarContentBasedJarFilePopulator" />

</list>

</property>

</bean>

</beans>

The third <constructor-arg> injects the bean named indexService into

the MavenSpider as it’s constructed. Once it has been constructed,

Spring will start the spider by calling the run() method, as indicated

by the <bean> element’s init-method= attribute. Later, when the Spring

context is shut down (when the bundle is stopped), Spring will invoke

the stop() method to stop the spider, as indicated by the destroy-method=

attribute.

The spider bundle is now converted from a bundle whose Java code is

strewn with bits of the OSGi API to one containing simple POJOs that

are managed by Spring. Before we move on, there’s one more thing left

to do. . . let’s build the spider bundle and see whether it works. First,

the build. . .

spider% mvn install

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 7 seconds

[INFO] Finished at: Fri Mar 20 18:00:13 CDT 2009

[INFO] Final Memory: 14M/31M

[INFO] --

spider%

. . . and then the provision:

spider% cd ..

dwmjs% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

INJECTING SERVICES INTO CONSUMERS 128

Joe Asks. . .

What If a Service Isn’t Available?

When we used the <reference> element to consume the index
service, we assumed that the service would be readily avail-
able. But what if it isn’t?

By default, Spring-DM will wait five minutes for the service to
become available before an unchecked ServiceUnavailableEx-

ception is thrown. If you want to change the timeout period,
you have two options.

First, you can set the timeout= attribute on the <reference> ele-
ment to adjust the timeout on a reference-by-reference basis:

<reference id="indexService"
interface="com.dudewheresmyjar.index.IndexService"
timeout="60000"/>

Or you can change the default timeout value by setting the
osgi:default-timeout= at the root of the XML file:

<beans:beans xmlns="http://www.springframework.org/schema/osgi"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/

spring-beans-2.5.xsd"
osgi:default-timeout="60000">

<reference id="indexService"
interface="com.dudewheresmyjar.index.IndexService" />

</beans:beans>

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

INJECTING SERVICES INTO CONSUMERS 129

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE org.springframework.osgi.extender_1.2.0

6 ACTIVE org.springframework.osgi.core_1.2.0

7 ACTIVE org.springframework.osgi.io_1.2.0

8 ACTIVE com.springsource.slf4j.org.apache.commons.logging_1.5.0

9 ACTIVE com.springsource.slf4j.api_1.5.0

Fragments=10

10 RESOLVED com.springsource.slf4j.log4j_1.5.0

Master=9

11 ACTIVE org.springframework.aop_2.5.6

12 ACTIVE org.springframework.beans_2.5.6

13 ACTIVE org.springframework.context_2.5.6

14 ACTIVE org.springframework.core_2.5.6

15 ACTIVE org.springframework.test_2.5.6

16 ACTIVE com.springsource.org.aopalliance_1.0.0

17 ACTIVE org.springframework.transaction_2.5.6

18 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

19 ACTIVE org.compass-project.compass_2.1.1

20 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

21 ACTIVE com.dudewheresmyjar.spider_1.0.0.SNAPSHOT

osgi>

So far so good. There were no exceptions thrown, and everything seems

to be working. Let’s check the spider bundle to make sure that it’s using

the index service:

osgi> bundle 21

initial@reference:file:com.dudewheresmyjar.spider_1.0.0.SNAPSHOT.jar/ [21]

Id=21, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmjs/runner/

equinox/org.eclipse.osgi/bundles/21/data

No registered services.

Services in use:

{org.springframework.beans.factory.xml.NamespaceHandlerResolver}={service.id=24}

{org.xml.sax.EntityResolver}={service.id=25}

{dwmj.index.IndexService}={org.springframework.osgi.bean.name=indexService,

Bundle-SymbolicName=com.dudewheresmyjar.index, Bundle-Version=1.0.0.SNAPSHOT,

service.id=26}

Exported packages

dwmj.spider.impl; version="1.0.0.SNAPSHOT"[exported]

Imported packages

dwmj.domain; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [18]>

dwmj.index; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [20]>

javax.swing.text; version="0.0.0"<System Bundle [0]>

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

INJECTING SERVICES INTO CONSUMERS 130

Spring-DM to Become Part of the OSGi Specification

As I write this, a draft of the OSGi 4.2 Specification is available.
Within this specification is RFC 124: A Component Model for
OSGi. It’s commonly being referred to as the Blueprint Service.

What’s curious about the Blueprint Service is that it looks sus-
piciously like Spring-DM. A few names and terms have been
changed, but for the most part, Blueprint Service is Spring-DM.
This should come as no surprise to anyone who looks closely as
the specification—it is written by employees of SpringSource,
the company behind the Spring Framework and Spring-DM.

See Appendix C, on page 218, for more information on how the
Blueprint Service compares to Spring-DM.

javax.swing.text.html; version="0.0.0"<System Bundle [0]>

javax.xml.parsers; version="0.0.0"<System Bundle [0]>

javax.xml.xpath; version="0.0.0"<System Bundle [0]>

org.w3c.dom; version="0.0.0"<System Bundle [0]>

No fragment bundles

Named class space

com.dudewheresmyjar.spider; bundle-version="1.0.0.SNAPSHOT"[provided]

No required bundles

osgi>

And there it is. The third entry under the Services in use: header tells us

that the spider bundle is using the index service—thanks to Spring-DM

and the <reference> element.

At this point we’ve developed all the bundles of the Dude, Where’s My

JAR? application twice: once using the core OSGi API and again using

Spring-DM. Before we move on, let’s take a moment to reflect on what

Spring-DM has done for us.

Without Spring-DM, both publication and consumption of a service

required writing directly to the OSGi API. In both cases, we had to write

an activator class to either register or retrieve a service in the OSGi

service registry. On the other hand, with Spring-DM we were able to

publish and consume services in a declarative fashion, with no need to

interact directly with the OSGi API.

Now we’re ready to put a face on this application. Coming up in the next

chapter, we’re going to develop the web front end of the application.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Modular Java’s Home Page

http://pragprog.com/titles/cwosg

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cwosg.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/cwosg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cwosg
www.pragprog.com/catalog

