
Extracted from:

Modular Java
Creating Flexible Applications

with OSGi and Spring

This PDF file contains pages extracted from Modular Java, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Craig Walls.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-40-9

ISBN-13: 978-1934356-40-1

Printed on acid-free paper.

P1.0 printing, May 2009

Version: 2009-6-18

http://www.pragprog.com

A Hello World SERVICE BUNDLE 38

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.0

osgi>

That was pretty cool. But it shows only half of what our bundle can do.

Now let’s stop the bundle and see what happens:

osgi> stop 1

Goodbye World!

osgi>

As expected, stopping the bundle yielded a “Goodbye World!” message

on the screen. And if we issue an ss command again, we’ll see that its

status is no longer in ACTIVE state:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 RESOLVED com.pragprog.HelloWorld_1.0.0

osgi>

Were you a little surprised to see the bundle in RESOLVED state?

Maybe you were expecting it to go back to INSTALLED state. For now,

don’t worry too much about bundle states—it’s enough to just know

that the bundle is no longer active. We’ll examine the bundle life cycle

in more detail later in Section 4.3, Following the Bundle Life Cycle, on

page 80.

I couldn’t be more excited! We’ve just built our first OSGi bundle, de-

ployed it to an OSGi container, and seen it do its stuff. If you’d like, you

can kick it around some more. Feel free to start it and stop it again as

many times as you like. But don’t get too carried away. . . there’s more

fun in store for the Hello World example.

2.3 A Hello World Service Bundle

A bundle can do a lot of things. It can simply act as a library, providing

classes and interfaces for other bundles to use. Or, as we’ve already

seen with the previous example, a bundle can contain an activator that

performs some action when the bundle is started and stopped.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 39

Another thing that a bundle can do is publish services to be consumed

by other bundles. To illustrate, let’s rip our Hello World example into

two parts: a bundle that publishes a service that provides greetings

and another bundle that contains a consumer of the service and prints

those greetings.

Publishing a Hello Service

The first step in creating a service is deciding what its interface will look

like. In OSGi, a service’s interface defines not only how other compo-

nents can interact with the service but also how the other components

find the service. For our Hello World service, we’ll need two methods:

one to return some hello message and one to return a goodbye mes-

sage. The following interface should do the trick:

Download hello-service/src/main/java/com/pragprog/hello/service/HelloService.java

package com.pragprog.hello.service;

public interface HelloService {

String getHelloMessage();

String getGoodbyeMessage();

}

Now we write the service implementation class. To keep things interest-

ing, the following service implementation has an international flair:

Download hello-service/src/main/java/com/pragprog/hello/service/impl/HelloImpl.java

package com.pragprog.hello.service.impl;

import com.pragprog.hello.service.HelloService;

public class HelloImpl implements HelloService {

public String getHelloMessage() {

return "Bonjour!";

}

public String getGoodbyeMessage() {

return "Arrivederci!";

}

}

Take notice of the service implementation’s package and how it dif-

fers from the interface’s package. Although both could reside in the

same package, it’s a good practice to keep them separate. As we’ll soon

see, keeping them separate will make it possible to publish the service

under an exported interface for other bundles to use, while keeping the

implementation of the service hidden from its consumers.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/java/com/pragprog/hello/service/HelloService.java
http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/java/com/pragprog/hello/service/impl/HelloImpl.java
http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 40

In OSGi, services are published to a service registry within the con-

tainer and are identified by the interface(s) that they implement. So,

we’ll need some way to register HelloImpl with the service registry. For

that, let’s create HelloPublisher:

Download hello-service/src/main/java/com/pragprog/hello/service/impl/HelloPublisher.java

package com.pragprog.hello.service.impl;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import com.pragprog.hello.service.HelloService;

public class HelloPublisher implements BundleActivator {

private ServiceRegistration registration;

public void start(BundleContext context) throws Exception {

registration = context.registerService(HelloService.class.getName(),

new HelloImpl(), null);

}

public void stop(BundleContext context) throws Exception {

registration.unregister();

}

}

HelloPublisher is a bundle activator, much like the HelloWorld activator

we created earlier. This activator, however, uses the BundleContext that

it is given to register an instance of HelloImpl as a service. It does this

by calling the BundleContext’s registerService() method, passing the ser-

vice’s interface (as the String returned from a call to the interface’s

class.getName() method), an instance of HelloImpl, and a set of service

properties to associate with the service (which, for our purposes, can

be null).

The last thing we need to create is the bundle’s META-INF/MANIFEST.MF

file:

Download hello-service/src/main/resources/META-INF/MANIFEST.MF

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.pragprog.HelloWorldService

Bundle-Name: HelloWorldService

Bundle-Version: 1.0.0

Bundle-Activator: com.pragprog.hello.service.impl.HelloPublisher

Import-Package: org.osgi.framework

Export-Package: com.pragprog.hello.service

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/java/com/pragprog/hello/service/impl/HelloPublisher.java
http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/resources/META-INF/MANIFEST.MF
http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 41

/

com

pragprog

hello

service

META-INF

MANIFEST.MF

HelloService.class

impl

HelloPublisher.class

HelloImpl.class

Figure 2.3: The structure of the HelloWorld service bundle

This bundle’s manifest isn’t dramatically different from the manifest we

created before, but there is one new header to take note of. The Export-

Package header publishes the contents of one or more packages for

other bundles to use. Here, we’ve exported the com.pragprog.hello.service

package so that consumers of our service can see and use the HelloSer-

vice interface.

What’s particularly interesting about Export-Package is the package that

it doesn’t export. Specifically, we’re not exporting the com.pragprog.

hello.service.impl package. That’s because the service’s implementation

(and HelloPublisher, for that matter) are implementation details that are

best kept secret. By not exporting them, we’re effectively declaring them

to be private, or unpublished. This prevents undesirable coupling that

may occur if another bundle were to try to use HelloImpl directly instead

of through its interface.

Now we’re ready to compile and package everything up in a JAR file. In

Figure 2.3, we can see the structure of the bundled JAR.

Finally, let’s install it in Equinox:

osgi> install file:target/hello-service-1.0.0.jar

Bundle id is 2

osgi> ss

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 42

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.0

2 INSTALLED com.pragprog.HelloWorldService_1.0.0

osgi>

The service bundle is now installed, alongside our first Hello World bun-

dle that we deployed earlier. But the service won’t be of any use to us

until we start the bundle:

osgi> start 2

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.0

2 ACTIVE com.pragprog.HelloWorldService_1.0.0

osgi>

When the service bundle is started, Equinox will invoke the start() meth-

od in HelloPublisher, consequently publishing the service in the service

registry. To prove that the service has been published, we can issue

Equinox’s bundle command:

osgi> bundle 2

file:target/hello-service-1.0.0-SNAPSHOT.jar [2]

Id=2, Status=ACTIVE

Data Root=/Users/wallsc/osgi/configuration/org.eclipse.osgi/bundles/2/data

Registered Services

{com.pragprog.hello.service.HelloService}={service.id=21}

No services in use.

Exported packages

com.pragprog.hello.service; version="0.0.0"[exported]

Imported packages

org.osgi.framework; version="1.4.0"<System Bundle [0]>

No fragment bundles

Named class space

com.pragprog.HelloWorldService; bundle-version="1.0.0"[provided]

No required bundles

osgi>

Notice that our service is found under the Registered Services heading.

Also, notice that com.pragprog.hello.service is under the Exported pack-

ages heading.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 43

Before we move on, it’s worth noting that although HelloPublisher makes

liberal use of the OSGi API in order to publish the service, HelloImpl and

HelloService are completely OSGi-free.

At this point, the service has been deployed, but nobody is using it. Our

original Hello World bundle is still in the container, but its activator is

still printing hard-coded greetings. Let’s put the service bundle to work

by giving it a client.

Consuming the Service

Rather than create a new bundle to consume the hello service, let’s re-

visit the original HelloWorld activator that we created earlier and change

it to use the HelloWorld service:

Download hello-consumer/src/main/java/com/pragprog/hello/HelloWorld.java

package com.pragprog.hello;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import com.pragprog.hello.service.HelloService;

public class HelloWorld implements BundleActivator {

public void start(BundleContext context) throws Exception {

HelloService helloService = getHelloService(context);

System.out.println(helloService.getHelloMessage());

}

public void stop(BundleContext context) throws Exception {

HelloService helloService = getHelloService(context);

System.out.println(helloService.getGoodbyeMessage());

}

private HelloService getHelloService(BundleContext context) {

ServiceReference ref = context.getServiceReference(HelloService.class

.getName());

HelloService helloService = (HelloService) context.getService(ref);

return helloService;

}

}

This new HelloWorld activator is a bit more interesting than the first one.

Rather than printing hard-coded greetings, the new start() and stop()

methods use the HelloService returned from getHelloService(). The getHel-

loService() method is just a convenience method that looks up the ser-

vice in the OSGi service registry. It does this by using the service’s class

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/hello-consumer/src/main/java/com/pragprog/hello/HelloWorld.java
http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 44

com.pragprog.HelloWorld
1.0.0

OSGi Framework

Bonjour!

Arrivederci!

com.pragprog.
HelloWorldService

1.0.0

Figure 2.4: The new service-oriented HelloWorld activator relies on a ser-

vice (deployed in a separate bundle) to provide its greetings.

name to get a service reference. With the service reference in hand, it

then asks the BundleContext for the service, as shown in Figure 2.4.

It may not be apparent at first glance, but the getHelloService() method

is rather naive. In OSGi, services can come and go as bundles are

installed, updated, started, stopped, and uninstalled. What will the

BundleContext’s getService() return if the service’s bundle isn’t active or

installed? As it turns out, if the service isn’t available, then getHelloSer-

vice() will return null, and the calls to getHelloMessage() and getGood-

byeMessage() will fail in a splendid fashion with a NullPointerException.

For now we’ll just pretend that the service will always be available.

We’ll examine some strategies for dealing with missing services more

gracefully in Chapter 5, OSGi Services, on page 82.

The only thing left to do is modify the manifest to account for the

changes made to the HelloWorld activator. Since the activator now uses

the HelloService interface, we must add its package to the Import-Package

header:

Download hello-consumer/src/main/resources/META-INF/MANIFEST.MF

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.pragprog.HelloWorld

Bundle-Name: HelloWorld

Bundle-Version: 1.0.1

Bundle-Activator: com.pragprog.hello.HelloWorld

Import-Package: org.osgi.framework,

org.osgi.util.tracker,

com.pragprog.hello.service

In addition to importing the service’s interface package, I have also

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/hello-consumer/src/main/resources/META-INF/MANIFEST.MF
http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 45

bumped up the Bundle-Version to 1.0.1, just to indicate that this is a

slightly different bundle than the one we’ve already installed.

All the pieces are now in place. To see it in action, first compile and JAR

up the bundle, and then install it to Equinox. Assuming that the new

version of the JAR file is in the same location as before, we can issue

the update command:

osgi> update 1

Goodbye World!

Bonjour!

A lot of stuff happens when we ask Equinox to update the bundle. It

first stops the bundle—that’s why we see the “Goodbye World!” mes-

sage. Then it uninstalls the old bundle and reinstalls the new bundle

from the original location. Finally, it starts the bundle, resulting in the

hello message being printed. And, it does all of this without having to

restart Equinox!

Did you notice that the hello message is now “Bonjour!”? That proves

that the activator is using the service and not simply printing the old

hard-coded “Hello World!” message. If you need any further evidence

that the bundle has been updated, check the status by issuing the ss

command:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.1

2 ACTIVE com.pragprog.HelloWorldService_1.0.0

osgi>

The thing to spot is that the version number is now 1.0.1 and not 1.0.0

as it was previously.

For proof that the activator is actually using the service, the bundle

command again comes in handy:

osgi> bundle 1

file:../hello/target/hello-activator-1.0.0.jar [1]

Id=1, Status=ACTIVE

Data Root=/Users/wallsc/osgi/configuration/org.eclipse.osgi/bundles/1/data

No registered services.

Services in use:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

A Hello World SERVICE BUNDLE 46

{com.pragprog.hello.service.HelloService}={service.id=21}

No exported packages

Imported packages

org.osgi.framework; version="1.4.0"<System Bundle [0]>

org.osgi.util.tracker; version="1.3.3"<System Bundle [0]>

com.pragprog.hello.service; version="0.0.0"

<file:../hello-service/target/hello-service-1.0.0.jar [2]>

No fragment bundles

Named class space

com.pragprog.HelloWorld; bundle-version="1.0.1"[provided]

No required bundles

osgi>

If you look under the Services in use: heading, you’ll find that this bun-

dle is using the service published by the service bundle. And, it imports

the com.pragprog.hello.service package that is exported by the service

bundle.

We’ve seen the hello message. Now let’s complete the story by stopping

the bundle and seeing the goodbye message:

osgi> stop 1

Arrivederci!

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 RESOLVED com.pragprog.HelloWorld_1.0.1

2 ACTIVE com.pragprog.HelloWorldService_1.0.0

osgi>

With that, we conclude our first adventure in OSGi. Although we’ve kept

things simple, we’ve covered a lot of ground. We’ve become acquainted

with two different OSGi containers (Equinox and Felix). We’ve also de-

ployed a simple Hello World bundle in an OSGi container and seen it in

action. And, we’ve expanded the Hello World example to be split across

two bundles, one consuming a service published by the other. All of this

serves as the basis for more OSGi adventure to come.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Modular Java’s Home Page

http://pragprog.com/titles/cwosg

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cwosg.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/cwosg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cwosg
www.pragprog.com/catalog

