
iOS Apps with REST APIs
Building Web-Driven Apps in Swift

Christina Moulton

This book is for sale at http://leanpub.com/iosappswithrest

This version was published on 2018-06-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2018 Teak Mobile Inc. All rights reserved. Except for the use in any review, the
reproduction or utilization of this work in whole or in part in any form by any electronic,
mechanical or other means is forbidden without the express permission of the author.

http://leanpub.com/iosappswithrest
http://leanpub.com/
http://leanpub.com/manifesto


9. Loading UITableViewCell Images
from an API

So far we’ve set up a Swift app that fetches and displays gists from the GitHub API. To do so it:

• Pulls public gists data from the GitHub gists API
• Turns the JSON response into an array of Swift structs
• Displays the results in a table view

In this chapter, we’ll add a new feature: displaying images of the gist owner’s avatar image in each
row in the table view. We’ll get the URLs from the API then load the images asynchronously so
that the UI isn’t held up while they’re loading. We’ll have to handle table view cells getting reused
while we’re retrieving the images and we’ll set up an image cache so we don’t have to pull down
the images every time a cell gets displayed.

If your API has images for your main items then follow along with this section. Otherwise,
you might want to skip it and come back when you do need to load images from URLs, even
if they’re not in a table view.

Here’s what it’ll look like when we’re done:

Final cell images

If you haven’t been following along, you might want to grab the code that’ll be our starting point
from GitHub (tagged “tableview”)¹.

Or if you’d rather not type, grab the completed code from this chapter (tagged “cell_images”)².
¹https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/tableview
²https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images

105

https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/tableview
https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images
https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/tableview
https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images


Loading UITableViewCell Images from an API 106

9.1 Loading Images from URLs

We’ve already set up our Gist class to parse out the gist owner’s avatar URL using Codable.

struct Gist: Codable {

struct Owner: Codable {

var login: String

var avatarURL: URL?

enum CodingKeys: String, CodingKey {

case login

case avatarURL = "avatar_url"

}

}

var id: String?

var gistDescription: String?

var url: URL?

var owner: Owner?

enum CodingKeys: String, CodingKey {

case id

case gistDescription = "description"

case url

case owner

}

}

So we have everything set up to retrieve the image URLs. Now we need to get the actual image data
from that URL. Adding to our GitHubAPIManager:

class GitHubAPIManager

{

// ...

func imageFrom(url: URL,

completionHandler: @escaping (UIImage?, Error?) -> Void) {

Alamofire.request(url)

.responseData { response in

guard let data = response.data else {

completionHandler(nil, response.error)

return

}

let image = UIImage(data: data)



Loading UITableViewCell Images from an API 107

completionHandler(image, nil)

}

}

}

That function will take the image URL and use it to make a GET request. When we get the results
(as Data since we’re using .responseData) we check that there is data and if so try to turn it into an
image. Then we pass that image back in the completion handler.

For this request we’re not using Codable because the response that we expect is just the data that
represents the image. It’s not wrapped in JSON or any other format so we can just access the data
directly by using response.data.

9.2 UITableViewCell Images from URLs

Now we can hook up displaying images. In MasterViewController’s tableView:(cellForRowAt

indexPath:):

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.description

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

}

return cell

}



Loading UITableViewCell Images from an API 108

We check that we have a URL for the image: if let url = gist.owner?.avatarURL. If so we fire
off the method that we just wrote. Before we make that call, we set the image to nil in case the cell
is being reused. We don’t want the image from another gist showing up until we get a response to
the network request:

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

GitHubAPIManager.shared.imageFrom(url: url) {

// ...

}

}

In the completion handler we first check for errors:

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

If we don’t have an error we set the image that we received as the cell’s image. This is a bit
complicated by the fact that our imageFrom(url:) function is asynchronous and by how table views
reuse cells. Since we’re using dequeueReusableCell(withIdentifier: for: indexPath) the table
view will reuse cells that have scrolled off of the screen. For example, if we have 20 gists but can
only see 10 cells on the screen at once the table view will only create about 12 or 14 cells. If our cell
has scrolled off of the screen then we shouldn’t set the image since that cell might end up being used
to display a different gist.

We can work around this problem by using the index path to get the correct cell, if one exists, once
we have the image:

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath)

If the cell is currently being shown, that’ll give us the cell that’s on the screen for our index path. Then
we can set the image on that cell. Since we’re all async here we also need to tell the cell that we’ve
changed part of its view and it needs to redraw itself by using cellToUpdate.setNeedsLayout().
Otherwise the image wouldn’t get updated.



Loading UITableViewCell Images from an API 109

Note that we don’t need to check if our image is nil before setting it to the cell’s imageView. If the
image is nil then cellToUpdate.imageView?.image = image will blank out the cell’s image.

Save and run. You should now see avatars for each gist as long as the user has set one:

If your API has images, set them up to load as we did in this section.

9.3 Enhancements

We’re firing off requests to get the images for each cell but sometimes by the time we get the result
we don’t need it anymore. An optimization would be to cancel the network requests when the cell
scrolls off of the screen. If you’re dealing with lots of images you’d want to do that (you’ll know
you need it if the scrolling isn’t smooth). Our scrolling seems pretty smooth and we’re going to add
a cache, so this concern isn’t one that needs to be addressed right now.

An optimization that is worthwhile even for this small app is caching the images so we don’t have
to grab them from the web every time they’re shown. We’ll implement a quick and easy single-run-
of-the-app cache to see how it can work. Then we’ll replace our cache with PINRemoteImage which
will give us a smarter persistent cache.

9.4 Caching Images

In our MasterViewController we can add a dictionary to hold the images indexed by their absolute
URL string:

var imageCache: [String: UIImage?] = [:]

Now we can save the images when we get them:



Loading UITableViewCell Images from an API 110

if let url = gist.owner?.avatarURL {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

// Save the image so we won't have to keep fetching it if they scroll

self.imageCache[url.absoluteString] = image

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

}

Before retrieving the image, we’ll check the cache to see if we already have it:

override func tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.gistDescription

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

if let cachedImage = imageCache[url.absoluteString] {

cell.imageView?.image = cachedImage

} else {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

// ...

}

}

}

}

return cell

}

So finally our tableView(: cellForRowAt indexPath:) function will look like:



Loading UITableViewCell Images from an API 111

override func tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.gistDescription

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

if let cachedImage = imageCache[url.absoluteString] {

cell.imageView?.image = cachedImage

} else {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

// Save the image so we won't have to keep fetching it if they scroll

self.imageCache[url.absoluteString] = image

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

}

}

return cell

}

To test out this code you’ll have to set a breakpoint and step through to see which lines get executed.
To add a breakpoint, click on the line number next to the code where you want the code execution
to stop:



Loading UITableViewCell Images from an API 112

Adding a breakpoint

Then run the app. When it gets to the breakpoint the code will stop running. At that point you can
use the panel at the bottom of Xcode to examine variables and step through the code:

Stopped at breakpoint

Click on the “step over” button to go to the next line of code:

Step over button

Watch which code path gets taken by seeing which line is highlighted. If there is an avatarURL it
will try to load it:



Loading UITableViewCell Images from an API 113

Load image

To resume the program until the next time the breakpoint is hit, click the continue button:

Continue button

When you run the app all of the images will get loaded from their URLs the first time that they’re
displayed because we’re not persisting the image cache between runs of the app. We’ll fix that in the
next section. Since table view cells get reused, our cache will kick in when we scroll cells on and off
of the screen. The easiest way to see when the cache gets used is to move the breakpoint to where
we’re loading an image from the cache:

Loading image from cache

After the initial cells load, scroll up and down. You should hit the breakpoint and see that line getting
executed.

9.5 A Better Cache: PINRemoteImage

We’ve set up our API calls to parse an image URL out of JSON, then to load the image from the URL.
We then used those images in UITableViewCells, handling the asynchronous loading even though
the cells might have been reused. We set up a primitive cache for a single run of the app that helps



Loading UITableViewCell Images from an API 114

us avoid constantly reloading the images. Before using this code in a released app it would be worth
setting up a persistent cache that’s used for multiple runs of the app.

PINRemoteImage³ is a persistent image caching library. Using this cache will make sure that images
are only loaded once. It’s also simpler to integrate than our non-persistent cache.

Add PINRemoteImage v 2.1 to your project using CocoaPods. Import it into the MasterViewCon-

troller file and remove our simple cache:

import UIKit

import PINRemoteImage

class MasterViewController: UITableViewController {

var detailViewController: DetailViewController? = nil

var gists = [Gist]()

var imageCache: [String: UIImage?] = [:]

\\ ...

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITa\

bleViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.gistDescription

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

// ...

}

return cell

}

// ...

}

PINRemoteImage works best with a placeholder image. That’s also a nice visual touch. So open the
Assets.xcassets asset library in your project (make sure you have the project organizer selected,
it’s the first icon on the top-left and looks like a folder):

³https://github.com/pinterest/PINRemoteImage

https://github.com/pinterest/PINRemoteImage
https://github.com/pinterest/PINRemoteImage


Loading UITableViewCell Images from an API 115

Asset Library

Then rename an image to placeholder.png and drag & drop the image into the left panel under the
AppIcon placeholder.

Add Placeholder Imace

To use PINRemoteImagewith a UIImageView, we call the pin_SetImage function and pass in the URL,
placeholder image, and a completion hanlder that is called after the image is set. Within the com-
pletion handler we can tell the cell it needs to refresh itself using cellToUpdate.setNeedsLayout().
We’ll display the placeholder for users who don’t have an avatar set as well as when we don’t have
an image loaded yet:



Loading UITableViewCell Images from an API 116

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.description

cell.detailTextLabel?.text = gist.owner?.login

// set cell.imageView to display image at gist.owner?.avatarURL

if let url = gist.owner?.avatarURL {

cell.imageView?.pin_setImage(from: url, placeholderImage:

UIImage(named: "placeholder.png")) {

result in

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.setNeedsLayout()

}

}

} else {

cell.imageView?.image = UIImage(named: "placeholder.png")

}

return cell

}

9.6 And That’s All

Save and run to test that out. You should end up with some avatar images loaded and your
placeholder image displayed for those who don’t have avatars:

Cell images

If you got tired of typing, here’s the code with PINRemoteImage: (tagged “cell_images”)⁴.

⁴https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images

https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images
https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images

	Table of Contents
	Thanks
	From JSON API to Swift App
	What Will You Be Able to Do?
	Who Is This Book For?
	Who Is This Book Not For?
	Using This Book
	What We Mean By Web Services / APIs / REST / CRUD
	What about GraphQL?
	JSON
	Versions
	Source Code
	Disclaimer
	Trademarks

	Our App's Requirements
	Match Tasks to Endpoints
	User Interface
	API Requirements
	Make a Plan

	Swift JSON Parsing & Networking Calls 101
	REST API Calls with URLSession
	REST API Calls with Alamofire

	Using a Router to Organize Alamofire Calls
	Generating the URL Requests
	Strongly Typed GET and POST Calls with Alamofire
	And That's All

	Parsing JSON with Codable
	Converting a Single Item to JSON
	Convert an Array of Items to JSON
	Generating JSON from an Item
	Nested JSON Objects
	What if the JSON Doesn't Match My Struct / Object?
	Some Warnings
	And That's Codable
	And That's All

	Why I Use Libraries Like Alamofire
	Hooking Up a REST API to a Table View
	Our Swift Project
	Analyzing the API JSON Response
	Setting Up the Table View
	Getting & Processing the API Response
	And That's All

	Custom HTTP Headers
	Per Request Headers
	Session Custom Headers
	Headers in URLRequestConvertible
	Request Adapter
	And That's All For Headers

	Loading UITableViewCell Images from an API
	Loading Images from URLs
	UITableViewCell Images from URLs
	Enhancements
	Caching Images
	A Better Cache: PINRemoteImage
	And That's All

	Pagination, a.k.a., Load More on Scroll
	Where is the Next Page?
	Fetching and Appending
	Integrating with the View Controller
	When to Load More Gists?
	And That's All for Pagination

	Pull to Refresh
	Adding Pull to Refresh
	Showing the Last Refreshed Time
	And That's All

	Authentication: Basic and HTTP Headers
	The Docs
	Basic Auth: Username/Password
	HTTP Header Authentication
	Alamofire Validation
	And That's All

	Authentication: Implementing the OAuth 2.0 Flow
	Get the OAuth Token
	Login View
	The OAuth Login Flow
	Using the OAuth Token for API Calls
	Storing the OAuth Token Securely
	Making Authenticated Calls
	And That's the Login Flow for OAuth 2.0

	Integrating OAuth with the UI
	Error Handling During OAuth Login
	Refresh Tokens
	Unauthorized Responses: 404 vs 401
	And That's All

	Switching Lists
	Setting Up the UI
	Sharing a Completion Handler
	And That's All

	Switching Between View Controllers and More JSON Parsing
	JSON Parsing: Dates
	JSON Parsing: Dictionaries & Arrays
	Configuring the Detail View Controller
	Passing Data in a Segue
	Adding a Table View
	Displaying Gist File Content
	And That's All

	Adding More API Calls - Starring
	Is the Gist Starred?
	Starred Status in the Table View
	PUT and DELETE Calls to Star and Unstar Gists
	Authorization Check
	And That's All

	Deleting Gists
	DELETE API Call
	User Interface: Table View Delete Features
	And That's All

	Creating Gists and Clearing the Cache
	POST API Call with Nested JSON Parameters
	Creating an Input Form with Validation
	And That's All

	What if They're Offline?
	How Do We Know?
	Verifying Offline Behavior
	OAuth Offline
	Save a Local Copy
	Databases

	What Next?
	User Interface
	Test the User Experience
	Suggested Exercises
	Did I Miss Anything?

	A Brief Introduction to CocoaPods
	Adding a CocoaPod to a Project
	What Does the Podfile Mean?
	Dependencies
	CocoaPods Version Numbers
	Updating CocoaPods


