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9. Loading UITableViewCell Images
from an API

So far we’ve set up a Swift app that fetches and displays gists from the GitHub API. To do so it:

• Pulls public gists data from the GitHub gists API
• Turns the JSON response into an array of Swift structs
• Displays the results in a table view

In this chapter, we’ll add a new feature: displaying images of the gist owner’s avatar image in each
row in the table view. We’ll get the URLs from the API then load the images asynchronously so
that the UI isn’t held up while they’re loading. We’ll have to handle table view cells getting reused
while we’re retrieving the images and we’ll set up an image cache so we don’t have to pull down
the images every time a cell gets displayed.

If your API has images for your main items then follow along with this section. Otherwise,
you might want to skip it and come back when you do need to load images from URLs, even
if they’re not in a table view.

Here’s what it’ll look like when we’re done:

Final cell images

If you haven’t been following along, you might want to grab the code that’ll be our starting point
from GitHub (tagged “tableview”)¹.

Or if you’d rather not type, grab the completed code from this chapter (tagged “cell_images”)².
¹https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/tableview
²https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images
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9.1 Loading Images from URLs

We’ve already set up our Gist class to parse out the gist owner’s avatar URL using Codable.

struct Gist: Codable {

struct Owner: Codable {

var login: String

var avatarURL: URL?

enum CodingKeys: String, CodingKey {

case login

case avatarURL = "avatar_url"

}

}

var id: String?

var gistDescription: String?

var url: URL?

var owner: Owner?

enum CodingKeys: String, CodingKey {

case id

case gistDescription = "description"

case url

case owner

}

}

So we have everything set up to retrieve the image URLs. Now we need to get the actual image data
from that URL. Adding to our GitHubAPIManager:

class GitHubAPIManager

{

// ...

func imageFrom(url: URL,

completionHandler: @escaping (UIImage?, Error?) -> Void) {

Alamofire.request(url)

.responseData { response in

guard let data = response.data else {

completionHandler(nil, response.error)

return

}

let image = UIImage(data: data)
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completionHandler(image, nil)

}

}

}

That function will take the image URL and use it to make a GET request. When we get the results
(as Data since we’re using .responseData) we check that there is data and if so try to turn it into an
image. Then we pass that image back in the completion handler.

For this request we’re not using Codable because the response that we expect is just the data that
represents the image. It’s not wrapped in JSON or any other format so we can just access the data
directly by using response.data.

9.2 UITableViewCell Images from URLs

Now we can hook up displaying images. In MasterViewController’s tableView:(cellForRowAt

indexPath:):

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.description

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

}

return cell

}
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We check that we have a URL for the image: if let url = gist.owner?.avatarURL. If so we fire
off the method that we just wrote. Before we make that call, we set the image to nil in case the cell
is being reused. We don’t want the image from another gist showing up until we get a response to
the network request:

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

GitHubAPIManager.shared.imageFrom(url: url) {

// ...

}

}

In the completion handler we first check for errors:

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

If we don’t have an error we set the image that we received as the cell’s image. This is a bit
complicated by the fact that our imageFrom(url:) function is asynchronous and by how table views
reuse cells. Since we’re using dequeueReusableCell(withIdentifier: for: indexPath) the table
view will reuse cells that have scrolled off of the screen. For example, if we have 20 gists but can
only see 10 cells on the screen at once the table view will only create about 12 or 14 cells. If our cell
has scrolled off of the screen then we shouldn’t set the image since that cell might end up being used
to display a different gist.

We can work around this problem by using the index path to get the correct cell, if one exists, once
we have the image:

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath)

If the cell is currently being shown, that’ll give us the cell that’s on the screen for our index path. Then
we can set the image on that cell. Since we’re all async here we also need to tell the cell that we’ve
changed part of its view and it needs to redraw itself by using cellToUpdate.setNeedsLayout().
Otherwise the image wouldn’t get updated.
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Note that we don’t need to check if our image is nil before setting it to the cell’s imageView. If the
image is nil then cellToUpdate.imageView?.image = image will blank out the cell’s image.

Save and run. You should now see avatars for each gist as long as the user has set one:

If your API has images, set them up to load as we did in this section.

9.3 Enhancements

We’re firing off requests to get the images for each cell but sometimes by the time we get the result
we don’t need it anymore. An optimization would be to cancel the network requests when the cell
scrolls off of the screen. If you’re dealing with lots of images you’d want to do that (you’ll know
you need it if the scrolling isn’t smooth). Our scrolling seems pretty smooth and we’re going to add
a cache, so this concern isn’t one that needs to be addressed right now.

An optimization that is worthwhile even for this small app is caching the images so we don’t have
to grab them from the web every time they’re shown. We’ll implement a quick and easy single-run-
of-the-app cache to see how it can work. Then we’ll replace our cache with PINRemoteImage which
will give us a smarter persistent cache.

9.4 Caching Images

In our MasterViewController we can add a dictionary to hold the images indexed by their absolute
URL string:

var imageCache: [String: UIImage?] = [:]

Now we can save the images when we get them:
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if let url = gist.owner?.avatarURL {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

// Save the image so we won't have to keep fetching it if they scroll

self.imageCache[url.absoluteString] = image

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

}

Before retrieving the image, we’ll check the cache to see if we already have it:

override func tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.gistDescription

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

if let cachedImage = imageCache[url.absoluteString] {

cell.imageView?.image = cachedImage

} else {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

// ...

}

}

}

}

return cell

}

So finally our tableView(: cellForRowAt indexPath:) function will look like:
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override func tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.gistDescription

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

if let cachedImage = imageCache[url.absoluteString] {

cell.imageView?.image = cachedImage

} else {

GitHubAPIManager.shared.imageFrom(url: url) {

(image, error) in

guard error == nil else {

print(error!)

return

}

// Save the image so we won't have to keep fetching it if they scroll

self.imageCache[url.absoluteString] = image

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.imageView?.image = image // will work fine even if image is nil

// need to reload the view, which won't happen otherwise

// since this is in an async call

cellToUpdate.setNeedsLayout()

}

}

}

}

return cell

}

To test out this code you’ll have to set a breakpoint and step through to see which lines get executed.
To add a breakpoint, click on the line number next to the code where you want the code execution
to stop:
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Adding a breakpoint

Then run the app. When it gets to the breakpoint the code will stop running. At that point you can
use the panel at the bottom of Xcode to examine variables and step through the code:

Stopped at breakpoint

Click on the “step over” button to go to the next line of code:

Step over button

Watch which code path gets taken by seeing which line is highlighted. If there is an avatarURL it
will try to load it:
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Load image

To resume the program until the next time the breakpoint is hit, click the continue button:

Continue button

When you run the app all of the images will get loaded from their URLs the first time that they’re
displayed because we’re not persisting the image cache between runs of the app. We’ll fix that in the
next section. Since table view cells get reused, our cache will kick in when we scroll cells on and off
of the screen. The easiest way to see when the cache gets used is to move the breakpoint to where
we’re loading an image from the cache:

Loading image from cache

After the initial cells load, scroll up and down. You should hit the breakpoint and see that line getting
executed.

9.5 A Better Cache: PINRemoteImage

We’ve set up our API calls to parse an image URL out of JSON, then to load the image from the URL.
We then used those images in UITableViewCells, handling the asynchronous loading even though
the cells might have been reused. We set up a primitive cache for a single run of the app that helps
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us avoid constantly reloading the images. Before using this code in a released app it would be worth
setting up a persistent cache that’s used for multiple runs of the app.

PINRemoteImage³ is a persistent image caching library. Using this cache will make sure that images
are only loaded once. It’s also simpler to integrate than our non-persistent cache.

Add PINRemoteImage v 2.1 to your project using CocoaPods. Import it into the MasterViewCon-

troller file and remove our simple cache:

import UIKit

import PINRemoteImage

class MasterViewController: UITableViewController {

var detailViewController: DetailViewController? = nil

var gists = [Gist]()

var imageCache: [String: UIImage?] = [:]

\\ ...

override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITa\

bleViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.gistDescription

cell.detailTextLabel?.text = gist.owner?.login

cell.imageView?.image = nil

if let url = gist.owner?.avatarURL {

// ...

}

return cell

}

// ...

}

PINRemoteImage works best with a placeholder image. That’s also a nice visual touch. So open the
Assets.xcassets asset library in your project (make sure you have the project organizer selected,
it’s the first icon on the top-left and looks like a folder):

³https://github.com/pinterest/PINRemoteImage

https://github.com/pinterest/PINRemoteImage
https://github.com/pinterest/PINRemoteImage
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Asset Library

Then rename an image to placeholder.png and drag & drop the image into the left panel under the
AppIcon placeholder.

Add Placeholder Imace

To use PINRemoteImagewith a UIImageView, we call the pin_SetImage function and pass in the URL,
placeholder image, and a completion hanlder that is called after the image is set. Within the com-
pletion handler we can tell the cell it needs to refresh itself using cellToUpdate.setNeedsLayout().
We’ll display the placeholder for users who don’t have an avatar set as well as when we don’t have
an image loaded yet:
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override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

let gist = gists[indexPath.row]

cell.textLabel?.text = gist.description

cell.detailTextLabel?.text = gist.owner?.login

// set cell.imageView to display image at gist.owner?.avatarURL

if let url = gist.owner?.avatarURL {

cell.imageView?.pin_setImage(from: url, placeholderImage:

UIImage(named: "placeholder.png")) {

result in

if let cellToUpdate = self.tableView?.cellForRow(at: indexPath) {

cellToUpdate.setNeedsLayout()

}

}

} else {

cell.imageView?.image = UIImage(named: "placeholder.png")

}

return cell

}

9.6 And That’s All

Save and run to test that out. You should end up with some avatar images loaded and your
placeholder image displayed for those who don’t have avatars:

Cell images

If you got tired of typing, here’s the code with PINRemoteImage: (tagged “cell_images”)⁴.

⁴https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images

https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images
https://github.com/cmoulton/grokSwiftREST_v1.4/releases/tag/cell_images
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