
iOS Apps with REST APIs
Building Web-Driven Apps in Swift

Christina Moulton

This book is for sale at http://leanpub.com/iosappswithrest

This version was published on 2018-06-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2018 Teak Mobile Inc. All rights reserved. Except for the use in any review, the
reproduction or utilization of this work in whole or in part in any form by any electronic,
mechanical or other means is forbidden without the express permission of the author.

http://leanpub.com/iosappswithrest
http://leanpub.com/
http://leanpub.com/manifesto


2. Our App’s Requirements
It’s always tempting to jump right into coding but it usually goes a lot smoother if we plan it out in
advance. At the least, we need some idea of what we’re building. Let’s lay that out for the gists app
and you can modify it to suit your app.

The first thing to do is to figure out what our app needs to do. There are a few ways to do this task
but I prefer to make a list of things that users will want to do with your app then design the screens
to make those things easy.

So what do people do with gists? Gists are snippets of text, often bits of code that are easily shared.
So people might:

1. Look at a list of public gists to see what’s new
2. Search for interesting gists, maybe by programming language
3. Star a gist so they can find it later
4. Look at a list of gists they’ve starred
5. Look at a list of their own gists to grab code they commonly use but don’t want to retype all

the time
6. Look at details for a gist in a list (public, their own, or starred)
7. Create a new gist
8. Delete one of their gists

List the tasks or user stories for your app. Compare them to the list for the gists app, focusing
on the number of different objects (like stars, users, and gists) and the types of action taken
(like viewing a list, viewing an object’s details, adding, deleting, etc.).

You might end up with a really long list. Consider each item and whether it’s really necessary for the
first version of your app. Maybe it can be part of the next release if the first one gets some traction?

Evaluate each task on your list. Decide which ones will form v1.0 of your app. You might
even want to design v2.0 now so you’re not tempted to put everything in the first version.
A good shipped app is far better than a perfect app that’s indefinitely delayed.

6



Our App’s Requirements 7

2.1 Match Tasks to Endpoints

Next look at each of those tasks and figure out how you can use the API to accomplish them or to get
the data you’ll need to display. We’ll check the documentation for the GitHub gists API¹ to find the
endpoint for each task. We’ll make notes of anything special that we need to do, like authentication
or pagination.

2.1.1 List Public Gists

GET /gists/public

No authentication required. Will be paginated so we’ll have to load more results if they want to see
more than 20 or so.

2.1.2 Search Gists

Hmm, there isn’t an API for searching gists. Is our app still useful without search? I think so, so we
don’t need to abandon the project.

2.1.3 Star/Unstar a Gist

PUT /gists/:id/star

DELETE /gists/:id/star

Requires authentication.

2.1.4 List Starred Gists

GET /gists/starred

Requires authentication.

2.1.5 List my Gists

There are two ways to get a list of a user’s gists:

GET /users/:username/gists

Or, if authenticated we can get the current user’s gists:

¹https://developer.github.com/v3/gists/

https://developer.github.com/v3/gists/
https://developer.github.com/v3/gists/


Our App’s Requirements 8

GET /gists

2.1.6 View Gist Details

We’ll probably be able to pass the data from the list of gists to the detail view but if we can’t then
we can get a single gist’s details:

GET /gists/:id

If we want to display whether a gist is starred then we can use:

GET /gists/:id/star

2.1.7 Create Gist

POST /gists

Requires authentication to create a gist owned by a user. Otherwise the gist is created anonymously.

The JSON to send to create a gist looks like:

{

"description": "the description for this gist",

"public": true,

"files": {

"file1.txt": {

"content": "String file content"

}

}

}

2.1.8 Delete Gists

DELETE /gists/:id

Requires authentication.

Those are the endpoints for our tasks. Other than not being able to build our search feature, we
shouldn’t have any trouble building our demo app around this API.

Analyze each action and list the API endpoint or iOS feature that will be needed for it.
Make sure that everything is possible using the API that’s available. If not, and the API is
being built by your team, then request what you need now so there’s plenty of time to get
it implemented. If you need features that aren’t available and you don’t have control over
the API then you’ll have to figure out how to work around those requirements.



Our App’s Requirements 9

2.2 User Interface

Now we have to figure out how we’re going to make the app usable by the users. Let’s look at each
task and figure out how we’d like it to work. I’ve reordered the tasks below a bit to group together
bits that will share parts of the interface.

2.2.1 Authentication Flow

Since there isn’t much they can do in the app without being logged in, we’ll check at launch if they’re
authenticated. If not, we’ll start the login process immediately.

If your API provides some functionality without authentication then you might want to delay
requiring the user to log in. If that’s the case you can add authentication checks before making
the API calls that require authentication.

2.2.2 List Public Gists

On launch the user sees a list (table view) with the public gists.

2.2.3 List Starred Gists

From the public gists the user can switch to a similar list of my starred gists.

2.2.4 List My Gists

From the public or starred gists the user can switch to a similar list of their own gists.

Do display these three lists of gists, we’ll be able to use a single table view with have a selector so
the user can pick which set of gists they want to view.

2.2.5 View Gist Details

When they tap on a gist in one of the lists we’ll transition to a different view. That view will list
details about the gist (description and filenames) and let them view the text of the files. It will also
show whether we’ve starred the gist.

2.2.6 Star/Unstar a Gist

Within a gist’s detail view we’ll show the starred status. They will be able to tap to star or unstar a
gist in that view.



Our App’s Requirements 10

2.2.7 Create Gist

On the list of My Gists we’ll have a + button in the upper right corner. Tapping on that button will
display a form where they can enter the info for the new gist:

• Description: text
• Whether it’s a public or private gist: Boolean
• Filename: text
• File content: text

To keep it simple we’ll only allow a single file in gists created in the app in this initial version.

2.2.8 Delete Gists

We’ll allow swipe to delete on the list of My Gists.

Go through your tasks and figure out the user interface that people will use to accomplish
those tasks.

2.3 API Requirements

We’ll have some requirements to interact with the API that aren’t obvious when we consider the
user’s tasks. Reading through the documentation carefully can help us make a list.

2.3.1 Authentication

You can read public gists and create them for anonymous users without a token; however,
to read or write gists on a user’s behalf the gist OAuth scope is required. GitHub Gists
API docs²

We will need to set up authentication, preferably OAuth 2.0, including the gist scope. The API will
work with a username/password but then we’d have to worry about securing that data within the
app. With OAuth 2.0 we never see the username & password, only the token for our app.

We will store the OAuth token securely.

Check your APIs authentication requirements. In the auth chapters we’ll cover how to
implement OAuth 2.0, token-based authentication, and basic auth with username/password.

²https://developer.github.com/v3/gists/#authentication

https://developer.github.com/v3/gists/#authentication
https://developer.github.com/v3/gists/#authentication
https://developer.github.com/v3/gists/#authentication


Our App’s Requirements 11

2.3.2 Handle App Transport Security

In iOS 9, Apple introduced Apple’s App Transport Security³. ATS requires SSL to be used for
transferring data and it’s pretty picky about just how it’s implemented. Sadly this means that a
lot of servers out there don’t meet ATS’s requirements. GitHub’s gist API complies with the ATS
requirements so we won’t have to add an exception.

If you find that you get SSL errors when calling your API from iOS 9 then you’ll probably
need to add an exception to ATS.

2.4 Make a Plan

Now that we know what we need to do we can figure out how we’re going to do it. We’ll build the
app up incrementally, feature by feature:

• Set up the app with a table view displaying the public gists
• Add custom HTTP headers
• Load images in table view cells
• Load more gists when they scroll down
• Add pull to refresh
• Add authentication and let them switch to displaying My Gists and Starred Gists
• Create a detail view for the gists
• Add starring & unstarring gists in the detail view
• Add deleting and creating gists
• Handle not having an internet connection

Put your views and tasks in order to implement them. Try to match up roughly with the
order for the gists app. If you don’t have an API call to start with that doesn’t require
authentication you might need to jump ahead to the auth chapters before starting on the
table view chapter. If your API requires custom headers to be sent with all requests then
you’ll want to start with the headers chapter then come back to the table view chapter.

Now that we’ve sorted out the basic requirements for our app we know where to start. First, we’ll
spend a little time looking at how to make web requests and parse JSON in Swift so we don’t get
bogged down with those details later.

³https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/
doc/uid/TP40009251-SW33

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33

	Table of Contents
	Thanks
	From JSON API to Swift App
	What Will You Be Able to Do?
	Who Is This Book For?
	Who Is This Book Not For?
	Using This Book
	What We Mean By Web Services / APIs / REST / CRUD
	What about GraphQL?
	JSON
	Versions
	Source Code
	Disclaimer
	Trademarks

	Our App's Requirements
	Match Tasks to Endpoints
	User Interface
	API Requirements
	Make a Plan

	Swift JSON Parsing & Networking Calls 101
	REST API Calls with URLSession
	REST API Calls with Alamofire

	Using a Router to Organize Alamofire Calls
	Generating the URL Requests
	Strongly Typed GET and POST Calls with Alamofire
	And That's All

	Parsing JSON with Codable
	Converting a Single Item to JSON
	Convert an Array of Items to JSON
	Generating JSON from an Item
	Nested JSON Objects
	What if the JSON Doesn't Match My Struct / Object?
	Some Warnings
	And That's Codable
	And That's All

	Why I Use Libraries Like Alamofire
	Hooking Up a REST API to a Table View
	Our Swift Project
	Analyzing the API JSON Response
	Setting Up the Table View
	Getting & Processing the API Response
	And That's All

	Custom HTTP Headers
	Per Request Headers
	Session Custom Headers
	Headers in URLRequestConvertible
	Request Adapter
	And That's All For Headers

	Loading UITableViewCell Images from an API
	Loading Images from URLs
	UITableViewCell Images from URLs
	Enhancements
	Caching Images
	A Better Cache: PINRemoteImage
	And That's All

	Pagination, a.k.a., Load More on Scroll
	Where is the Next Page?
	Fetching and Appending
	Integrating with the View Controller
	When to Load More Gists?
	And That's All for Pagination

	Pull to Refresh
	Adding Pull to Refresh
	Showing the Last Refreshed Time
	And That's All

	Authentication: Basic and HTTP Headers
	The Docs
	Basic Auth: Username/Password
	HTTP Header Authentication
	Alamofire Validation
	And That's All

	Authentication: Implementing the OAuth 2.0 Flow
	Get the OAuth Token
	Login View
	The OAuth Login Flow
	Using the OAuth Token for API Calls
	Storing the OAuth Token Securely
	Making Authenticated Calls
	And That's the Login Flow for OAuth 2.0

	Integrating OAuth with the UI
	Error Handling During OAuth Login
	Refresh Tokens
	Unauthorized Responses: 404 vs 401
	And That's All

	Switching Lists
	Setting Up the UI
	Sharing a Completion Handler
	And That's All

	Switching Between View Controllers and More JSON Parsing
	JSON Parsing: Dates
	JSON Parsing: Dictionaries & Arrays
	Configuring the Detail View Controller
	Passing Data in a Segue
	Adding a Table View
	Displaying Gist File Content
	And That's All

	Adding More API Calls - Starring
	Is the Gist Starred?
	Starred Status in the Table View
	PUT and DELETE Calls to Star and Unstar Gists
	Authorization Check
	And That's All

	Deleting Gists
	DELETE API Call
	User Interface: Table View Delete Features
	And That's All

	Creating Gists and Clearing the Cache
	POST API Call with Nested JSON Parameters
	Creating an Input Form with Validation
	And That's All

	What if They're Offline?
	How Do We Know?
	Verifying Offline Behavior
	OAuth Offline
	Save a Local Copy
	Databases

	What Next?
	User Interface
	Test the User Experience
	Suggested Exercises
	Did I Miss Anything?

	A Brief Introduction to CocoaPods
	Adding a CocoaPod to a Project
	What Does the Podfile Mean?
	Dependencies
	CocoaPods Version Numbers
	Updating CocoaPods


