DevOps
in Practice

Reliable and automated software delivery

=

/

Code
Crushing DANILO SATO

© Code Crushing
All rights reserved and protected by the Law n®9.610, from 10/02/1998.
No part of this book can be neither reproduced nor transferred with-
out previous written consent by the editor, by any mean: photographic,
eletronic, mechanic, recording or any other.

Code Crushing
Books and programming
Rua Vergueiro, 3185 - 8% andar
04101-300 — Vila Mariana — Sao Paulo — SP — Brasil

CHAPTER 5

Puppet beyond the basics

By the end of chapter 4, the Puppet code to configure the online store’s in-
frastructure is not very well organized. The only separation that we did was
creating two manifest files, one for each server: web and db. However, in
each file, the code is simply a long list of resources. In addition, the config-
uration and template files are written without any structure. In this chapter
we will learn new Puppet concepts and features while refactoring the online
store infrastructure code to make it more idiomatic and better factored.

5.1 CLASSES AND DEFINED TYPES

Puppet manages a single instance of each resource defined in a manifest, mak-
ing them similar to a singleton. Likewise, a class is a collection of singleton
resources in the system. If you know object-oriented languages, do not get
confused with this terminology. A Puppet class cannot be instantiated multi-

5.1. Classes and defined types Code Crushing

ple times. Classes are just a way of giving a name to a collection of resources
that will be applied as a unit.

A good use case for Puppet classes is when you are configuring services
that you need to install in the system only once. For example, in the db.pp
file we install and setup MySQL server and then create the application-specific
user and schema for the online store. In a real scenario, we could have several
schemas and users in the same underlying database, but we do not install
MySQL multiple times in the same system. MySQL server is a good candidate
to be setup in a generic class, which we will call mysgl-server. Refactoring
our db.pp file to declare and use this new class, we will have:

class mysql-server {

exec { "apt-update": ... }
package { "mysql-server": ... }
file { "/etc/mysql/conf.d/allow_external.cnf": ... }
service { "mysql": ... }
exec { "remove-anonymous-user": ... }
}

include mysql-server

exec { "store-schema": ...,
require => Class["mysql-server"],

}
exec { "store-user": ... }

Notice that we moved the Exec["remove—-anonymous—user"]
resource - that revokes access to the anonymous user - into the

mysgl-server class because this is something that should happen only
once when MySQL server is installed. Another change you may no-
tice is that the Exec["store-schema"] resource now depends on
Class["mysgl-server"] instead of the previous Service["mysgl"]
resource. This is a way to encapsulate implementation details within a class,
isolating this knowledge from the rest of the code, which can declare depen-
dencies on something more abstract and stable.

To define a new class, just choose its name and define all of its resources
ina class <class name> { ... } declaration. To use a class, you can

96

Code Crushing Chapter 5. Puppet beyond the basics

use the include syntax or a version that’s more similar to how we have been
defining other resources: class { "<class name>": ... }.

On the other hand, the resources to create the online store schema and
user can be reused to create schemas and users for other applications run-
ning in the same database server. Putting them in a class would be the wrong
way to encapsulate them, because Puppet would force them to be singletons.
For situations like this, Puppet has another form of encapsulation known as
“defined types”

A defined type is a collection of resources that can be used multiple times
in the same manifest. They help you eliminate duplication by grouping related
resources that can be reused together. You can think of them as the equivalent
to macros in a programming language. Moreover, they can be parameterized
and define default values for optional parameters. Grouping the two exec
resources that create the database schema and user in a defined type called
mysql-db, we will have:

class mysql-server { ... }

define mysql-db($schema, $user = $title, $password) {
Class[’mysql-server’] -> Mysql-db[$title]

exec { "$title-schema":
unless => "mysql -uroot $schema",
command => "mysqladmin -uroot create $schema",
path => "/usr/bin/",

b

exec { "$title-user":
unless => "mysql -u$user -p$password $schema",
command => "mysql -uroot -e \"GRANT ALL PRIVILEGES ON \
$schema.* TO ’$user’@’%’ \
IDENTIFIED BY ’$password’;\"",
path => "/usr/bin/",
require => Exec["$title-schema"],

97

5.1. Classes and defined types Code Crushing

include mysql-server

mysql-db { "store":

schema => "store_schema",
password => "storesecret",
}
The syntax to declare a defined type is define <defined type
name> (<parameters>) { ... }. In our example, the mysgl-db de-

fined type accepts three parameters: $schema, $Suser and $password.
The $user parameter, unless otherwise specified, will take the default value
of the special $title parameter. In order to understand the value of
$title parameter — which does not need to be explicitly declared - just
look at the syntax used when instantiating a defined type: mysqgl-db ({
"store": schema => "store_schema", ... }. The resource name
that instantiates the defined type, in this case store, will be passed as the
value for the $title parameter. The other parameters are passed following
the same syntax used in other native Puppet resources: the parameter name
and its value separated by an arrow =>.

We moved the two exec resources that create the schema and the user
to a defined type. We also replaced all the hard-coded references with the re-
spective parameters, paying attention to use double quotes in strings so Pup-
pet can expand the values correctly. In order to use the defined type more than
once, we need to parameterize the names of the exec resources to make them
unique, using the $title parameter. The last update was to promote the de-
pendency with the mysgl-server class to the top of the defined type. With
that, the individual resources inside the defined type don’t have to declare any
dependencies with external resources, making our code easier to maintain in
the future.

Using classes and defined types, we managed to refactor our Puppet code
to make it more reusable. However, we have not yet changed how the files are
organized. Everything continues to be declared in a single file. We need to
learn a better way to organize our files.

98

Code Crushing Chapter 5. Puppet beyond the basics

5.2 USING MODULES FOR PACKAGING AND DISTRIBU-
TION

Puppet has a standard for packaging and structuring your code: They are
called modules. Modules define a standard directory structure in which you
should place your files, as well as some naming conventions. Modules are
also a way to share Puppet code with the community. The Puppet Forge
(http://forge.puppetlabs.com/) is a website maintained by Puppet Labs where
you can find many modules written by the community, or you can register
and share a module you wrote.

Depending on your experience with different languages, the equivalent of
a Puppet module in Ruby, Java, Python and .NET would be a gem, a jar, an
egg and a DLL, respectively. The simplified directory structure for a Puppet
module is:

<module name>/
files

manifests
init.pp
templates

tests
init.pp

First of all, the name of the root directory defines the module name.
The most important directory is the manifests directory, because it is where
you place your manifest files (with a .pp extension). Inside it, there
must be at least one file called init.pp, which is loaded as the entry
point for the module. The files directory contains static configuration files
that can be used by a file resource in a manifest using a special URL:
puppet:///modules/<module name>/<file>. The wnqﬂans direc-
tory contains ERB files that can be referenced in a manifest using the module
name: template (‘<module name>/<ERB file>’).

Finally, the tests directory contains examples of how to use the Classes,
as well as defined types exposed by the module. These tests do not per-

99

	Introduction
	Traditional approach
	An alternative approach: DevOps and Continuous Delivery
	About the book

	Everything starts in production
	Our example application: an online store
	Installing the production environment
	Configuring the production servers
	Application build and deploy

	Monitoring
	Monitoring other hosts
	Adding more specific checks
	Receiving alerts

	Infrastructure as code
	Provision, configure or deploy?
	Configuration management tools
	Provisioning the database server
	Provisioning the web server

	Puppet beyond the basics
	Classes and defined types
	Using modules for packaging and distribution
	Refactoring the web server Puppet code
	: Separation of concerns: infrastructure vs. application
	Puppet forge: reusing community modules
	Conclusion

	Continuous integration
	Agile engineering practices
	Starting with the basics: version control
	Automating the build process
	Automated testing: reducing risk and increasing confidence
	What is continuous integration?
	Provisioning a continuous integration server
	Configuring the online store build
	Infrastructure as code for the continuous integration server

	Deployment pipeline
	Infrastructure affinity: using native packages
	Continuous integration for the infrastructure code
	Deployment pipeline
	Next steps

	Advanced topics
	Deploying in the cloud
	DevOps beyond tools
	Advanced monitoring systems
	Complex deployment pipelines
	Managing database changes
	Deployment orchestration
	Managing environment configuration
	Architecture evolution
	Security
	Conclusion

	Bibliography

