

© Code Crushing

All rights reserved and protected by the Law nº9.610, from 10/02/1998.

No part of this book can be neither reproduced nor transferred with-

out previous written consent by the editor, by any mean: photographic,

eletronic, mechanic, recording or any other.

Code Crushing

Books and programming

Rua Vergueiro, 3185 - 8º andar

04101-300 – Vila Mariana – São Paulo – SP – Brasil

C������ �

Deployment pipeline

Now that we have adopted the practice of continuous integration, we have a
reliable way to generate and validate new versions of the online store on each
commit. At the end of a successful build we have a .war artifact that becomes
a release candidate for production. �is is an important step in the journey
to implement continuous delivery and increase the deployment frequency.
We have all the necessary components to create a click-button deployment
process, now we just need to connect the dots.

Currently, the online_store Puppet module has a .war �le with a
�xed version that was created whenwe did our �rst manual build in chapter �.
To use a more recent .war �le, we could download a local copy by accessing
the job overview page in Jenkins, placing it inside the Puppet module, and
reprovisioning the web server. But instead of doing this manually, we will
learn how to publish artifacts using a package repository that can be accessed
directly from our Puppet code during a deploy.

�.�. Infrastructure a�nity: using native packages Code Crushing

We will also discuss how to integrate the infrastructure code into our au-
tomated delivery process and how to model the di�erent steps required to
take a code change from commit to production, reliably and e�ectively.

�.� I������������� ��������: ����� ������ ����-
����

Copying �les fromone place to another is not themost e�cient way to deploy.
�at is why in Java it is common to use .war or .jar �les to group several
�les in a single package.�ey are nothingmore than a zip �le – awell known
compression format – with some extra metadata that describes the contents
of the package. Other languages also have their own formats for packaging
and distribution: .gem in Ruby, .dll in .NET, etc.

System administrators are used to the operating system’s native packaging
system for packaging, distributing, and installing so�ware. We are already
using it extensively in our Puppet code every time we create a resource of the
type Package or when using the apt-get command to install MySQL,
Tomcat, Nagios, etc.

�is is an example of when developers and system administrators have
di�erent opinions and use di�erent tools. DevOpsmay improve collaboration
by simply aligning the tools used during this process. �ere are several rea-
sons why system administrators prefer to use native packages to install so�-
ware:

• Versioning and dependency management: �is reason is question-
able because some other formats – such as Rubygems – also have this
kind of support. .jar and .war �les also support declaring the pack-
age version inside the META-INF/MANIFEST.MF �le, but this is not
mandatory and has no special semantics that tools can take advantage
of. Native packages, on the other hand, treat dependencies and di�er-
ent versions as an integral part of the package and know how to resolve
them at installation time.

• Distribution system: Repositories are the natural way to store and
share native packages, and their management and installation tools are

���

Code Crushing Chapter �. Deployment pipeline

able to perform searches and download the required packages at instal-
lation time.

• Installation is transactional and idempotent: Package management
tools support both installing, uninstalling and updating (or upgrading)
packages, and these operations are transactional and idempotent. You
do not risk installing only half of the package and leaving loose �les in
the system.

• Support for con�guration �les: Native packages are able to identify
con�guration �les that can be edited a�er they are installed. �e pack-
agemanager will keep the edited �le or will save a copy of the �le so you
do not lose your changes when you upgrade or remove the package,.

• Integrity check: When packages are created, a checksum is calculated
based on its contents. A�er the package has been downloaded for
installation, the package manager will recalculate this checksum and
compare it with what was published in the repository to ensure that
the package has not been tempered or corrupted during the download
process.

• Signature check: Similarly, packages are cryptographically signed
when published in the repository. During the install process, the pack-
age manager can check this signature to ensure that the package is ac-
tually coming from the desired repository.

• Audit and traceability: Packagemanagers allow you to discover which
package installed which �le on the system. Moreover, you will discover
where a certain package came from and who was responsible for creat-
ing it.

• A�nity with infrastructure tools: Finally, most infrastructure au-
tomation tools – such as Puppet, Chef, Ansible, Salt, etc. – are able
to deal with native packages, package managers and their repositories.

For these reasons we will learn how to create a native package for our
application. Furthermore, we will also create and con�gure a package reposi-

���

�.�. Infrastructure a�nity: using native packages Code Crushing

tory to publish and distribute these new packages generated at the end of each
successful build.

Provisioning the package repository

Our servers are virtualmachines running Linux as their operating system.
Speci�cally, we are using Ubuntu, a Linux distribution based on Debian. In
this platform, native packages are known as .deb packages and APT is the
standard package manager tool.

A package repository is nothing more than a well de�ned directory and
�le structure. �e repository can be exposed in various ways, such as: HTTP,
FTP, a local �le system, or even a CD-ROM, which used to be the most com-
mon form of distributing Linux.

We will use Reprepro (http://mirrorer.alioth.debian.org/) to create and
manage our package repository. We will reuse the ci server to distribute the
packages becausewewill be able to use the same tool tomanage the repository
and to publish new packages at the end of each build. For this we will create
a new class in our online_storemodule called online_store::repo

within a new modules/online_store/manifests/repo.pp �le with
the following initial content:

class online_store::repo($basedir, $name) {
package { ’reprepro’:

ensure => ’installed’,
}

}

�is will install the Reprepro package. �is class receives two pa-
rameters: $basedir will be the full path where the local reposi-
tory directory will be created and $name is the name of the repos-
itory. We also need to include this class in the ci server and
we will do this by changing the online_store::ci class in the
modules/online_store/manifests/ci.pp �le:

class online_store::ci {
...
$archive_artifacts = ’combined/target/*.war’

���

Code Crushing Chapter �. Deployment pipeline

$repo_dir = ’/var/lib/apt/repo’
$repo_name = ’devopspkgs’

file { $job_structure: ... }
file { "${job_structure[1]}/config.xml": ... }

class { ’online_store::repo’:
basedir => $repo_dir,
name => $repo_name,

}
}

We added two new variables to represent the root directory and the name
of theRepository, andwe created a new Class[’online_store::repo’]

resource that uses these variables as class parameters.
In Unbutu, each version of the operating sytem has a nickname, also

known as distribution. In our case, we are using Ubuntu ��.��, also known
as precise.

Debian and Ubuntu repositories are also divided into components that
represent di�erent levels of support: main contains so�ware that is o�cially
supported and free; restricted has so�ware that is supported but with
a more restrictive license; universe contains packages maintained by the
community in general; multiverse contains so�ware that is not free.

In our case, since we are distributing only a single package, all of these
classi�cations are not as important, so we chose to distribute our package as
a main component.

For Reprepro to create the initial directories and �les struc-
ture of the repository, we must create a con�guration �le called
distributions within a conf directory in the root of the
repository. For that, we create a new ERB template �le under
modules/online_store/templates/distributions.erb with
the following content:

Codename: <%= name %>

Architectures: i386
Components: main
SignWith: default

���

	Introduction
	Traditional approach
	An alternative approach: DevOps and Continuous Delivery
	About the book

	Everything starts in production
	Our example application: an online store
	Installing the production environment
	Configuring the production servers
	Application build and deploy

	Monitoring
	Monitoring other hosts
	Adding more specific checks
	Receiving alerts

	Infrastructure as code
	Provision, configure or deploy?
	Configuration management tools
	Provisioning the database server
	Provisioning the web server

	Puppet beyond the basics
	Classes and defined types
	Using modules for packaging and distribution
	Refactoring the web server Puppet code
	: Separation of concerns: infrastructure vs. application
	Puppet forge: reusing community modules
	Conclusion

	Continuous integration
	Agile engineering practices
	Starting with the basics: version control
	Automating the build process
	Automated testing: reducing risk and increasing confidence
	What is continuous integration?
	Provisioning a continuous integration server
	Configuring the online store build
	Infrastructure as code for the continuous integration server

	Deployment pipeline
	Infrastructure affinity: using native packages
	Continuous integration for the infrastructure code
	Deployment pipeline
	Next steps

	Advanced topics
	Deploying in the cloud
	DevOps beyond tools
	Advanced monitoring systems
	Complex deployment pipelines
	Managing database changes
	Deployment orchestration
	Managing environment configuration
	Architecture evolution
	Security
	Conclusion

	Bibliography

