

A SwiftUI Kickstart

UIKit Prequel

by Daniel H Steinberg

Editors Cut

Copyright

"A SwiftUI Kickstart UIKit Prequel", by Daniel H Steinberg

Copyright © 2019 Dim Sum Thinking, Inc. All rights reserved.

ISBN-13: 9 978-1-944994-00-6

This is the prequel to A SwiftUI Kickstart originally released December 29, 2019.

Legal

Every precaution was taken in the preparation of this book. The publisher and author

assume no responsibility for errors and omissions, or for damages resulting from the use of

the information contained herein and in the accompanying code downloads.

The sample code is intended to be used to illustrate points made in the text. It is not

intended to be used in production code.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks or service marks. Where those designations appear in this book,

and Dim Sum Thinking, Inc. was aware of the trademark claim, the designations have been

printed with initial capital letters or in all capitals.

This book uses terms that are registered trademarks of Apple Inc. for which the terms of

use don't permit rendering them in all caps or initial caps. You can view a complete list of

the trademarks and registered trademarks of Apple Inc at

http://www.apple.com/legal/trademark/appletmlist.html.

The Editor's Cut name and logo are registered trademarks of Dim Sum Thinking, Inc.

A SwiftUI Kickstart UIKit Prequel

Table Of Contents
A UIKit Motivator for SwiftUI

A Simple App
Visual Coding
But...
Code: All in One
Code: Smaller Pieces

A SWIFTUI PREQUEL

UIKit Motivator For SwiftUI

Sections: A Simple App
Visual Coding
But ...
Code: All in one
Code: Smaller Pieces

This is the former first chapter of A SwiftUI Kickstart.

In the first version of the book I started with this chapter that worked
an example in UIKit and then in the next chapter rebuilt that
example with SwiftUI to highlight the differences. That was helpful
as a transitional chapter but more people are coming to SwiftUI
without first working in UIKit so I've removed this chapter but offer it
as a stand-alone.

I will not be maintaining or updating this chapter for changes in
Xcode but the concepts are still valid and may help your move from
UIKit to SwiftUI.

This code was tested with Xcode 11 on Catalina.

So where do we start?

https://editorscut.com/Books/SwiftUIKickstart/bookPage.html

We begin our hero's journey, as all such stories begin: our hero (that
would be you), is going about their business in their ordinary world
unaware that everything is about to change.

This may seem silly that we begin with an example from UIKit before
going on to SwiftUI, but to truly understand what is different about
this new world, we need to take one last look at our current one.

In this chapter we start by looking at the way we did things before
SwiftUI. I can't keep you from skipping ahead to the next chapter
where we start looking at SwiftUI but I encourage you to relax and
enjoy this journey. After all, you're the hero.

CHAPTER 0 : SECTION 1

A Simple App

Suppose we have the simplest app that actually does something. It
will have a label and a button. When we tap the button we need to
send a message to the label so it changes what it displays.

If you are using UIKit instead of SwiftUI, this is the job of the view
controller. The view controller knows how to talk to the label using
something we call an outlet. The view controller also has a function
that gets called when the button is tapped. This function is referred
to as an action.

Previewing the app

When the app launches we see a label that says "Hello" and a
button with the title "Press Here". When we tap the button the label
changes to say "Hello, World!" and the button is disabled.

That's it.

Here is what it looks like at launch. Note that throughout this
book the screen shots are of light mode as opposed to dark
mode.

And this is after the button is tapped.

Note the screenshots don't include the phone bezels.

The components

We have a label and a button arranged vertically in the center of the
screen. In fact, we want to ensure they remain in the center if our

device is in landscape.

We'll arrange our label and button in a stack view and use
autolayout.

Less code

In the WWDC sessions introducing SwiftUI in 2019, Apple engineers
kept stressing that you'll write less code.

First, I don't always think "less code" is a good argument. Second, I
would accomplish everything I've mentioned so far using a
storyboard. The only thing I would code would be the action that is
triggered when the user taps the button.

In other words, I often write more code in SwiftUI than I did in UIKit
and I think more code is ok. The code that I write feels very
different.

The plan

Before we get there, in the remainder of this chapter we look at this
simple app three ways.

Using a storyboard

Doing everything in the ViewController in code

Splitting the functionality into many files.

Wait. Why are we taking time to look at three different approaches
to doing things the old way? Shouldn't we get started doing things
the new way?

Here's the thing.

When we start working with SwiftUI, everything is jumbled together.
I think it will help if you first consider which parts are for creating
and configuring various widgets, which parts are for organizing and
presenting them on the screen, and which parts are for working with
data and getting things done.

We'll start by working visually and create much of our app in a
storyboard.

CHAPTER 0 : SECTION 2

Using Storyboards

In our first version of the app, we'll create our visual elements in the
storyboard.

You know that I don't use lines of code as a metric, but if you care
about such things, we will create half a dozen lines of code in this
version.

Create the project

Create a new iOS Single View app. Name it VisualGoodbye,
choose Swift as the language, and make sure you choose
Storyboard as your User Interface.

Here are the files generated for this project. The only two that
we'll work with are ViewController.swift and Main.storyboard.

Add the visual components

Select the Main.storyboard in the project navigator. Click the +
button on the right side of Xcode's toolbar or use the keyboard
shortcut Command - Shift - L to bring up the Object Library. Drag a
Label and drop it on the View.

Use the Attributes Inspector to set the Label's text to Hello, the

color to Secondary Label Color, and the font to Title 1.

Now, drag a Button from the Object Library and drop it underneath

the Label.

Set the title to Press Here.

Layout the components

UIKit introduced StackViews a while back. They allow you to

group other elements vertically or horizontally so that you can
organize your screen into pieces that will shrink and grow
depending on screen size, orientation, and whether the app is
sharing the screen with other apps.

When we get to SwiftUI, we will use vertical stack views called
VStacks, horizontal stack views called HStacks and even stack

views whose axis is perpendicular to the screen called ZStacks.

Let's group our label and button inside a vertical stack view.

Select both the Label and the Button and either tap on the

button at the bottom right to embed them in a StackView or use

the menu item Editor > Embed In > Stack View.

Select the StackView and center it horizontally and vertically.

Connect to the code

Let's connect our Button and Label to code. Bring up

ViewController.swift in the Assistant Editor.

Control-Click and Drag from the Label to inside of the

ViewController class and release to create an outlet. Set the

name to greetingLabel. Its type should be UILabel.

Also, Control-Click and Drag from the Button to inside of the

ViewController class to create an action. Make sure the

connection is Action, set the name to greet, and the type to

UIButton.

The generated code

Here are the contents of ViewController.swift. Note, I specified that
both the outlet and action are private and I removed the

viewDidLoad() method.

01/VisualGoodbye/VisualGoodbye/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var greetingLabel: UILabel!

 @IBAction private func greet(_ button: UIButton) {
 }
}

Note that in general I present

existing code like this: greetingLabel: UILabel!

new or featured code that I want to call out or discuss like this:
private

comments like this: // this is a comment

and console output like this: Hello, World!

the path to the file the code comes from is given above the
listing

Implement the action

Back to our app.

All that remains is to implement the action. When the Button is

tapped we disable the Button and change the Label's contents to

Hello, World!

01/VisualGoodbye/VisualGoodbye/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var greetingLabel: UILabel!

 @IBAction private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
 }
}

If you're counting, that's ten lines of code and we only wrote two of
them.

Run the app. Push the button.

Feel good about what we've done for a moment. In the next section
I take a contrarian approach that I don't believe in.

CHAPTER 0 : SECTION 3

But...

In this section we take another look at those ten lines in
ViewController and categorize them by where they come from, look

at other generated code, and take a step back to look at the view
hierarchy.

Separating the code

We just built an app where we only wrote these two lines of code.

01/VisualGoodbye/VisualGoodbye/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var greetingLabel: UILabel!

 @IBAction private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
 }
}

But even in this file we created all of the other lines of code, we just
didn't explicitly write them.

These lines were generated for us when we created our app.

01/VisualGoodbye/VisualGoodbye/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var greetingLabel: UILabel!

 @IBAction private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
 }
}

These lines were created when we connected the outlet and action.

01/VisualGoodbye/VisualGoodbye/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var greetingLabel: UILabel!

 @IBAction private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
 }
}

There is a lot of code in other files that was generated when we
created the project that we never looked at. I'm not going to worry
about those.

But what about our storyboard?

Generated XML

We dragged a label and a button onto the scene in our
storyboard and we configured them so they looked like this.

Xcode persists all of our work in the storyboard as XML. You can
argue that this is code that we create without writing it.

I disagree with this point of view. True you "create" it, but it is not
code that you write. However you feel, let's take a look at the
generated XML anyway.

Option - Click on Main.storyboard and choose Open As >
Source Code and you'll see something like this.

You can see that our view contains a vertical stackview that contains
a label and a button. The label has a connection that is an outlet
and the button has a connection that is an action.

Generally, we're warned against editing the XML by hand. Every
item has an ID and we can easily end up in an inconsistent state.

But what if instead of XML, we persisted the storyboard in easy to
read and easy to write Swift?

That's actually a big part of what's going on with SwiftUI. If you're
on Catalina then you can modify the code and see the Live Preview
update in real-time. Or you can add something to the Live Preview

and view the changes to the code immediately. Everything will be
exposed and you can work in whichever mode you prefer.

The storyboard's hierarchy view

To see the connection between where we are now and at what's
coming, take a look at the hierarchy view in the storyboard.

In particular, focus on the part that descends from View. Let's write it

with the following pseudocode.

View {
 StackView (vertical, centered x and y in the view) {
 Label (larger text, lighter color) {
 Text displays "Hello"
 }
 Button {
 Text says "Press Here"
 Action changes what is displayed in the Label
 }
 }
}

In the next section, we'll create this in code in Swift using UIKit. In
the actual book we do the same using SwiftUI.

CHAPTER 0 : SECTION 4

Code: All In One

In this section we code up the same example without a storyboard.

Outline the code

Create a new project with all of the same settings as the previous
one and name it ManualGoodbye1.

We'll do all of our work in the ViewController's viewDidLoad method.

Here's an outline of what we need to do.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 // create and configure our StackView

 // create and configure our Label

 // create and configure our Button
 }

 // create the button action
}

The stack view

Here's how we create the stack view and add it as a subview of the
View.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our StackView
let stackView = UIStackView()
view.addSubview(stackView)

Configure the stack view to be a vertical stack view and to center
the items it contains. The horrible line of code with
translatesAutoresizingMaskIntoConstraints = false is needed to

allow our stack view to participate in autolayout.

Wait until you see how much nicer all this is with SwiftUI.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our StackView
let stackView = UIStackView()
view.addSubview(stackView)

stackView.axis = .vertical
stackView.alignment = .center
stackView
 .translatesAutoresizingMaskIntoConstraints = false

Finally, center the stack view both horizontally and vertically in the
containing view.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our StackView
let stackView = UIStackView()
view.addSubview(stackView)

stackView.axis = .vertical
stackView.alignment = .center
stackView.translatesAutoresizingMaskIntoConstraints = false

stackView.centerXAnchor
 .constraint(equalTo: view.centerXAnchor)
 .isActive = true
stackView.centerYAnchor
 .constraint(equalTo: view.centerYAnchor)
 .isActive = true

Great. We have a view containing a vertical stack view. Run the app
and nothing is visible.

Make and display the label

Let's create the label.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our Label
let greetingLabel = UILabel()

Set the label's text size, text color, and text.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our Label
let greetingLabel = UILabel()

greetingLabel.textColor = .secondaryLabel
greetingLabel.font
 = UIFont.preferredFont(forTextStyle: .title1)
greetingLabel.text = "Hello"

Add the label to the stack view.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our Label
let greetingLabel = UILabel()

greetingLabel.textColor = .secondaryLabel
greetingLabel.font
 = UIFont.preferredFont(forTextStyle: .title1)
greetingLabel.text = "Hello"

stackView.addArrangedSubview(greetingLabel)

Run the app in the simulator and you should see the label
containing the word "Hello".

The button

OK, let's create, configure, and add the Button.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our Button
let greetingButton = UIButton(type: .roundedRect)
greetingButton.setTitle("Press Here", for: .normal)

stackView.addArrangedSubview(greetingButton)

Run the app again and the button appears below the label.

Messaging the label

We're about to have a little problem.

Right now the button doesn't do anything. We want it to change the
contents of the label.

So what's the problem?

The problem is that the action will be contained in a function that
can't see the label. There are several ways to accomplish this. For
now we're going to mimic what we did in our visual version. You
might remember that greetingLabel was a property so it was visible

from the action.

Here's the view controller code from the visual version.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

import UIKit

class ViewController: UIViewController {
 @IBOutlet private weak var greetingLabel: UILabel!

 @IBAction private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
 }
}

Let's create a property for the label in our current version like this.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

class ViewController: UIViewController {

 private let greetingLabel = UILabel()

 override func viewDidLoad() {
 super.viewDidLoad()

 // ...
 // create and configure our Label
 let greetingLabel = UILabel()

 greetingLabel.textColor = .secondaryLabel // ...

The button action

We can now write our button's action. It takes the sender, which
we'll call button as an argument and it's labeled @objc so that it can

be used as an action.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create the button action
@objc private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
}

All that's left is to assemble the pieces. When the user touches up
inside of the button, we will call the greet method on the view

controller. Here's how we express that using the addTarget method.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

// create and configure our Button
let greetingButton = UIButton(type: .roundedRect)
greetingButton.setTitle("Press Here", for: .normal)
greetingButton.addTarget(self,
 action: #selector(greet),
 for: .touchUpInside)

stackView.addArrangedSubview(greetingButton)
}

The app now works as before. We haven't used a ton of code but it
feels like we've just taken the XML and expressed the same
information in Swift.

Our view controller

For completeness, here's ViewController.swift.

01/ManualGoodbye1/ManualGoodbye1/ViewController.swift

import UIKit

class ViewController: UIViewController {

 private let greetingLabel = UILabel()

 override func viewDidLoad() {
 super.viewDidLoad()

 let stackView = UIStackView()
 view.addSubview(stackView)
 stackView.axis = .vertical
 stackView.alignment = .center
 stackView
 .translatesAutoresizingMaskIntoConstraints = false
 stackView.centerXAnchor
 .constraint(equalTo: view.centerXAnchor)
 .isActive = true
 stackView.centerYAnchor
 .constraint(equalTo: view.centerYAnchor).
 isActive = true

 greetingLabel.textColor = .secondaryLabel
 greetingLabel.font
 = UIFont.preferredFont(forTextStyle: .title1)
 greetingLabel.text = "Hello"
 stackView.addArrangedSubview(greetingLabel)

 let greetingButton = UIButton(type: .roundedRect)
 greetingButton.setTitle("Press Here", for: .normal)
 greetingButton.addTarget(self,
 action: #selector(greet),
 for: .touchUpInside)
 stackView.addArrangedSubview(greetingButton)
 }

 @objc private func greet(_ button: UIButton) {
 button.isEnabled = false

 greetingLabel.text = "Hello, World!"
 }
}

Everything is mixed together. It's hard for me to glance at this and
see there's a button, a label, and a button action that changes the
text in the label. The creation, configuration, layout, and behavior
are all mushed together.

In the next section, we'll break it up into more pieces and write it
more cleanly.

CHAPTER 0 : SECTION 5

Code: Smaller Pieces

In this section we break up the code from viewDidLoad in ViewController into

cohesive pieces. When we're done, there will be a lot more code in this
version but it will be easier to understand.

Separate components

The components of our app are a UILabel, a UIButton, and a UIStackView.

These are all instances of subclasses of UIView.

This time when we code up our example we'll create custom subclasses of
UILabel, UIButton, and UIStackView.

We won't be able to do this when we use SwiftUI because the
corresponding types for buttons, labels, and vertical stacks are structs not
classes. You'll see how we handle those differently in the next chapter.

In fact, as you'll see in two chapters, the way we handle data will change
dramatically when we move from a single file to multiple files in SwiftUI.

My point is that it might seem like busywork to break the ViewController

into multiple files, but it will give us context for our discussion in the next
two chapters.

Ready?

You can either make another new project with the same settings as the
previous two and name it ManualGoodbye2 or you can refactor

ManualGoodbye1. I'm going to create a new project.

My issue with the previous version of this example was that every time
someone has to fix something they have to read through and understand
viewDidLoad(). It's not that the method was too long so much as that it did

too many different things.

The stack view

As a contrast, let's pull out the stack view code into a new file in the
ManualGoodbye2 group that is a subclass of UIStackView named

VerticalStackView.

We'll create a convenience initializer that instantiates a vertical stack view
containing the UIView subclasses passed in and adds it as a subview of the

UIView passed in. We add a function named centered() that centers the

stack view in its super view.

Here's VerticalStackView.swift.

01/ManualGoodbye2/ManualGoodbye2/VerticalStackView.swift

import UIKit

class VerticalStackView: UIStackView {
 convenience init(in view: UIView,
 containing views: UIView ...) {
 self.init(arrangedSubviews: views)
 translatesAutoresizingMaskIntoConstraints = false
 alignment = .center
 axis = .vertical
 view.addSubview(self)
 }

 func centered() {
 if let view = superview {
 centerXAnchor
 .constraint(equalTo: view.centerXAnchor)
 .isActive = true
 centerYAnchor
 .constraint(equalTo: view.centerYAnchor)
 .isActive = true
 }
 }
}

Add our vertical stack view in the ViewController's viewDidLoad() method.

01/ManualGoodbye2/ManualGoodbye2/ViewController.swift

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 let stackView = VerticalStackView(in: view)
 stackView.centered()
 }
}

The label

At the moment, the stack view doesn't contain anything. Let's add a label.

Create a subclass of UILabel named GreetingLabel. Again, let's put the code

that creates and configures our label in a convenience initializer.

Here's GreetingLabel.swift.

01/ManualGoodbye2/ManualGoodbye2/GreetingLabel.swift

import UIKit

class GreetingLabel: UILabel {
 convenience init(displaying text: String) {
 self.init()
 textColor = .secondaryLabel
 font = UIFont.preferredFont(forTextStyle: .title1)
 self.text = text
 }
}

In ViewController we add a property for the label and add it to our stack

view in viewDidLoad().

01/ManualGoodbye2/ManualGoodbye2/ViewController.swift

class ViewController: UIViewController {
 private let greetingLabel
 = GreetingLabel(displaying: "Hello")

 override func viewDidLoad() {
 super.viewDidLoad()
 let stackView
 = VerticalStackView(in: view,
 containing: greetingLabel)
 stackView.centered()
 }
}

The button

A button needs to know two things: what it displays and what it does when
tapped. Create a subclass of UIButton named GreetingButton with a

convenience initializer that does this.

01/ManualGoodbye2/ManualGoodbye2/GreetingButton.swift

import UIKit

class GreetingButton: UIButton {
 convenience init(title: String,
 target: AnyObject,
 selector: Selector) {
 self.init(type: .roundedRect)
 setTitle(title, for: .normal)
 addTarget(target,
 action: selector,
 for: .touchUpInside)
 }
}

We saw in the previous section that we don't need to create a property for
the button, so we'll instantiate it and add it to the stack view. Here's how
we add the button and action to ViewController.swift.

01/ManualGoodbye2/ManualGoodbye2/ViewController.swift

import UIKit

class ViewController: UIViewController {
 private let greetingLabel = GreetingLabel(displaying: "Hello")

 override func viewDidLoad() {
 super.viewDidLoad()
 let stackView
 = VerticalStackView(in: view,
 containing: greetingLabel,
 GreetingButton(title: "Press Here",
 target: self,
 selector: #selector(greet)))
 stackView.centered()
 }

 @objc private func greet(_ button: UIButton) {
 button.isEnabled = false
 greetingLabel.text = "Hello, World!"
 }
}

Run the app and it looks and behaves exactly like the previous versions.

Where we are

You can argue that there's a lot more code in this version than in the others
but I think it's a lot easier to read.

The code to create and configure the widgets is in GreetingLabel.swift
and GreetingButton.swift.

The code that describes the layout is in VerticalStackView.swift.

ViewController.swift contains little more than our visual version and it has
no public API.

Now we're ready for our call to action. Now we're ready for SwiftUI. We'll
begin with SwiftUI in the next chapter.

The remainder of this chapter contains information about the book that
you might find useful.

	A UIKit Motivator for SwiftUI
	A Simple App
	Visual Coding
	But...
	Code: All in One
	Code: Smaller Pieces

