

Copyright
Copyright © 2020, 353solutions LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

A Job to Do
job.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 type Job struct {
 8 State string
 9 done chan struct{}
10 }
11
12 func (j *Job) Wait() {
13 <-j.done
14 }
15
16 func (j *Job) Done() {
17 j.State = "done"
18 close(j.done)
19 }
20
21 func main() {
22 ch := make(chan Job)
23 go func() {
24 j := <-ch
25 j.Done()
26 }()
27
28 job := Job{"ready", make(chan struct{})}
29 ch <- job
30 job.Wait()
31 fmt.Println(job.State)
32 }

 Try to guess what the output is before moving to the next page.

This code will print: ready

At first glance, it looks like the code is OK. You’re using a pointer receiver in the Job struct methods.
The fact that the call to Wait returned tells you that the channel was closed.

The problem is with the definition of ch. It is a channel of Job, not *Job, which means that when you
send the variable job over the channel, you actually send a copy of it. A channel in Go is a "pointer
like" type, so even though there is a copy of job inside the goroutine, j.done points to the same
channel job.done is pointing to.

Strings in Go are not "pointer like". When you call j.Done() inside the goroutine, you change the
value of the State field in the goroutine copy of job. This change is not reflected in the job variable
declared in line 28.

The solution is to make ch type *Job

job_ptr.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 type Job struct {
 8 State string
 9 done chan struct{}
10 }
11
12 func (j *Job) Wait() {
13 <-j.done
14 }
15
16 func (j *Job) Done() {
17 j.State = "done"
18 close(j.done)
19 }
20
21 func main() {
22 ch := make(chan *Job)
23 go func() {
24 j := <-ch
25 j.Done()
26 }()
27
28 job := Job{"ready", make(chan struct{})}
29 ch <- &job
30 job.Wait()
31 fmt.Println(job.State)
32 }

Further Reading
• There is no pass-by-reference in Go

• Channel types in the Go specification

• Go Concurrency Patterns: Pipelines and cancellation

• Channels in the Go tour

https://dave.cheney.net/2017/04/29/there-is-no-pass-by-reference-in-go
https://golang.org/ref/spec#Channel_types
https://blog.golang.org/pipelines
https://tour.golang.org/concurrency/2

	Go Brain Teasers
	Copyright
	A Job to Do

