

Agile and Lean Program
Management
Scaling Collaboration Across the
Organization

Johanna Rothman

ISBN 978-1-943487-04-2

No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and
retrieval system, without written permission from the author.

Every precaution was taken in the preparation of this book.
However, the author and publisher assumes no responsibility for
errors or omissions, or for damages that may result from the use of
information contained in this book.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Practical Ink was aware of a
trademark claim, the designations have been printed in initial

capital letters or in all capitals.

© 2016 Johanna Rothman

For my family. Thank you for your support.

Contents

Praise Quotes . i

Acknowledgments . iv

Foreword . v

Introduction . vii

1. Defining Agile and Lean Program Management . . . 1
1.1 Review the Twelve Principles of Agile Software

Development . 3
1.2 Review the Seven Lean Principles 4
1.3 Agile and Lean Together Create Adaptive Programs 4
1.4 A Program Is a Strategic Collection of Several

Projects . 5
1.5 Program Management Facilitates the Program to

Release . 6
1.6 Program Management Coordinates the Business

Value . 6
1.7 Agile Program Management Scales Collaboration 7
1.8 Agile and Lean Effect Change at the Program Level 9
1.9 What Program Managers Do 9
1.10 Take a Product Perspective 10
1.11 Principles of Agile and Lean Program Management 11

2. Consider Your Program Context 12

CONTENTS

2.1 Cynefin Helps with Decisions 12
2.2 Understand Your Product’s Complexity 16
2.3 Know Which Program Teams You Need 18
2.4 The Core Team Provides Business Leadership and

Value . 23
2.5 Do You Need a Core Team? 24
2.6 Principles of Consider Your Program Context . . . 25

3. Organize Your Program Teams 26
3.1 Create Your Core Team 26
3.2 Beware of Forgetting Core Team Members 28
3.3 The Product Owner Role Is Key to the Program’s

Success . 29
3.4 Organize the Software Program Team 31
3.5 Don’t Manage More than One Program Team

Yourself . 33
3.6 Principles of Organizing Your Program Teams . . 34

4. Start Your Program Right 35
4.1 A Program Charter Sets the Strategy 35
4.2 Develop the Program Charter with the Core Team 36
4.3 We Can’t Afford the Travel 37
4.4 Lead the Program Chartering Effort 38
4.5 Create Your Own Program Charter Template . . . 39
4.6 Iterate on the Program Charter and Plans 45
4.7 Create the Agile Roadmap 46
4.8 Create the Big Picture Roadmap 48
4.9 Principles of Start Your Program Right 50

5. Use Continuous Planning 52
5.1 Differentiate Between Internal and External Re-

leases . 52
5.2 What Do You Want to Release This Month? . . . 53
5.3 Create Minimum Releasables 54
5.4 Plan for External Releases 56

CONTENTS

5.5 Deliverable and Rolling Wave Planning Helps . . 57
5.6 Small is Beautiful for Programs 58
5.7 How Often Can You Replan? 59
5.8 Separate the Product Roadmap from the Project

Portfolio . 61
5.9 Ways to Rank Items in the Roadmap or Backlogs . 62
5.10 Decide How You Will Evaluate Value 67
5.11 Update the Roadmaps Often 68
5.12 Principles of Continuous Planning 68

6. Create an Environment of Delivery 70
6.1 Visualize Program Team Work 70
6.2 Keep the Program Team Work Small 72
6.3 How Features Flow Through Teams 73
6.4 How Often Can You Release Your Product? 74
6.5 Release Internally, Even with Hardware 75
6.6 Are You Integrating Chunks or Products From

Others? . 77
6.7 Manage the Risks of Integration from Other Vendors 78
6.8 Create a Culture of Delivery Throughout the Pro-

gram . 80
6.9 Principles of Create an Environment of Delivery . 80

7. Encourage Autonomy, Collaboration, and Exploration 81
7.1 Software is Learning, Not Construction 81
7.2 Scaling Agile Means Scaling Collaborative Practices 82
7.3 Create Autonomous Feature Teams 84
7.4 Create Small-World Networks to Optimize Learning 85
7.5 Communities of Practice Create Connection and

Collaboration . 87
7.6 Avoid Hierarchical Titles 88
7.7 Continuous Integration and Testing Supports Col-

laboration . 90
7.8 Beware of Technical Debt 92
7.9 Invite People to Experiment 93

CONTENTS

7.10 Principles of Encourage Autonomy, Collabora-
tion, and Exploration 93

8. Conduct Useful Meetings for Your Program 95
8.1 Explaining Status: Do Not Use Standups at the

Program Level 96
8.2 Define a Rhythm for Your Program Team 97
8.3 Organize Your Program Team Meetings 101
8.4 Program Team Meetings Solve Problems 103
8.5 Retrospect at the Program Team Level 106
8.6 Principles for Conduct Useful Meetings for Your

Program . 107

9. Estimating Program Schedule or Cost 108
9.1 Does Your Organization Want Resilience or Pre-

diction? . 109
9.2 Ask These Questions Before Estimating 110
9.3 Targets Beat Estimates 111
9.4 Generate an Estimate with a Percentage Confidence 111
9.5 Present Your Estimate as a Prediction 115
9.6 Spiral in on an Estimate 116
9.7 Supply a Three-Date Estimate 117
9.8 Do You Really Need an Estimate? 118
9.9 Beware of These Program Estimation Traps 118
9.10 Estimation Do’s and Don’ts for Program Managers 120
9.11 Principles of Estimating Schedule or Cost 122

10. Useful Measurements in an Agile and Lean Program 123
10.1 What Measurements Will Mean Something to

Your Program? 124
10.2 Never Use Team-BasedMeasurements for a Program 124
10.3 Measure by Features, Not by Teams 126
10.4 Measure Completed Features 128
10.5 Measure the Product Backlog Burnup 129
10.6 Measure the Time to Your Releasable Deliverable 132

CONTENTS

10.7 Measure Release Frequency 132
10.8 Measure Build Time 133
10.9 Other Potential Measurements 133
10.10 Measure Performance or Reliability Release Criteria 136
10.11 How toAnswer the “WhenWill You BeDone/How

Much Will Your Program Cost” Question 137
10.12 Principles . 139

11. Develop Your Servant Leadership 140
11.1 Program Managers No Longer “Drive” the Program 140
11.2 Consider Your Servant Leadership 141
11.3 How Servant Leaders Work 142
11.4 Some People Don’t Want Servant Leadership . . . 143
11.5 Welcome Bad News 145
11.6 Use the Growth Mindset 148
11.7 Ask For the Results You Want 148
11.8 Principles of Develop Your Servant Leadership: . . 150

12. Shepherd the Agile Architecture 151
12.1 Architects Write Code 152
12.2 Many Developers Become Architects 155
12.3 Encourage Iterative and Incremental Architecture 155
12.4 Architects Can Help Expose Risks 157
12.5 What the Program Architect Accomplishes Daily 158
12.6 Architecture is a Social Activity 160
12.7 Problems You May Encounter With Architecture . 161
12.8 Break the Architecture with Purpose 163
12.9 Principles of Shepherd the Agile Architecture . . . 164

13. Solve Program Problems 166
13.1 Ask For the Problems or Impediments First 166
13.2 People on the Core Team Don’t Deliver What

They Promise . 168
13.3 Your Product Owners Have Feature-itis 168
13.4 People on Teams Are Multitasking 170

CONTENTS

13.5 How to Start a Program With More People Than
You Need . 171

13.6 Principles of Solve Program Problems 173

14. Integrating Hardware Into Your Program 175
14.1 Hardware Risks Are Different Than Software Risks 175
14.2 Understand Cost and Value for Hardware 176
14.3 Understand Each Part’s Value 178
14.4 See the Work . 180
14.5 Design Incrementally and Iteratively 183
14.6 Use Continuous Design Review 183
14.7 Integrate Hardware Often 184
14.8 Manage Hardware Risks 185
14.9 Develop the Software Before the Hardware Is

Available . 186
14.10 Principles of Integrating Hardware Into Your Pro-

gram . 189

15. Troubleshooting Agile Team Issues 190
15.1 The Teams Are Not Feature Teams 190
15.2 Teams Think They Are Agile, But They Are Not . 194
15.3 The Teams Have Dependencies on Other Teams . 200
15.4 Your Features Span Several Iterations 203
15.5 You Don’t Have Frequent-Enough Deliverables . . 203
15.6 Teams Don’t Finish When They Say They Are Done 204
15.7 Principles of Troubleshooting Agile Team Issues . 206

16. Integrating Agile and Not-Agile Teams in Your Pro-
gram . 207
16.1 Waterfall Teams Are Part of Your Program 208
16.2 You Have Teams that Produce Incrementally, But

Not in an Agile Way 210
16.3 You Have Teams that Prototype and Don’t Com-

plete Features . 210

CONTENTS

16.4 Principles of IntegratingAgile andNot-Agile Teams
in Your Program 211

17. What to Do If Agile and Lean Are Not Right for You 212
17.1 Try an Incremental Life Cycle 213
17.2 Organize by Feature Team 216
17.3 Learn to Release Interim Deliverables 217
17.4 Learn How to Reduce Batch Size With a Large

Program . 217
17.5 Try Release Trains 218
17.6 Principles for What to Do if Agile and Lean Are

Not Right for You 221

Annotated Bibliography 223

Glossary . 228

More from Johanna . 231

12. Shepherd the Agile
Architecture

One of the big problems in agile and lean program management is
how to manage the product’s architecture. If you don’t shepherd
the architecture, you end up with a mess. If you create frameworks
before you have features, you will be wrong. You might have sig-
nificant rework (not refactoring) late in the program. Architecture
throughout the program is the way we manage that risk. You
might need to Encourage Iterative and Incremental Architecture,
Architects Can Help Expose Risks, and decide When Should You
Consider Architectural Stories.

The risks of deciding on the frameworks up front are considerable
in a program. On the other hand, no architectural guidance might
be a disaster on your program. Consider how your program can
create an iterative and incremental approach to architecture. Also
consider when is the most responsible moment to decide on the
product’s architecture and the frameworks.

Back in How Often Can You Release Your Product?, you saw the
potential for release frequency, based on the kind of product you
have. Now, consider when to make architectural decisions.

151

Shepherd the Agile Architecture 152

Release Frequency and the Cost of Architectural Decisions

The closer your product is to SaaS, the longer you can wait to make
many architectural decisions. You might have to make product-
guidance architectural decisions, but you often don’t have to make
many large up-front design decisions. The closer your product is
to the right side of the continuum, with hardware, the more you
might have to use set-based design approaches, or provide more
architectural guidance earlier.

The program architect should not decide alone. The program archi-
tect works with feature teams and other architects across the pro-
gram to collaborate and decide when to select which frameworks.

That makes your program architect’s job one of shepherding the
business value of the architecture, which is a social and collabora-
tive role requiring communications. The program architect helps
facilitate the autonomy, collaboration, and exploration for the
feature teams.

12.1 Architects Write Code

If we start with the premise that all architects on our program write
code, we start well.

In software programs, we are accustomed to having enterprise,
solution, or application architects. Often, those people do not sit

Shepherd the Agile Architecture 153

with the project teams. Instead, they proclaim the architecture from
afar, early in the program.

That doesn’t work in agile or lean programs. It doesn’t work in other
programs either, but we can discuss that later, over a beverage of
your choice.

In an agile or lean program, the architect is responsible for the
business value of the architecture, not for telling people what to
do. The program architect does this in many ways:

• Balances the short-term goals with the overall system in-
tegrity, risk, expediency, technical debt, anything else that
you would trade off short term goals against.

• Sustains development against technical debt. For test sys-
tems, this is the age-old problem of testing versus automating
the tests and how you automate the tests. I’m a huge fan of
automate enough and refactor your way into what you need,
because you may not know what you need until you see how
the system under development evolves.

• Writes acceptance criteria for system qualities and quality
scenarios for the product.

• Leads the definition of how a complex system is structured,
organized, and implemented. Landing zones can help guide
this effort.

• Works with a feature team in a hands-on way. No seagull
architects. No PowerPoint architects, (See Practices of an
Agile Developer for an excellent description of this, SH06).
No prophets. No police. Agile architects develop code and
develop tests.

• Works with users (or with the program product owner on
behalf of the users) to understand what the users do, how the
users work, what the users understand and don’t understand
about the system. What is the product vision? (See Develop
the Program Vision for more information.)

Shepherd the Agile Architecture 154

Architects work with the entire project team, not alone. Architects
work on all parts of the product, not just the challenging or inter-
esting parts. In fact, if there are rote parts or boring parts, maybe
that’s where the architect is needed most to automate something so
humans don’t have to do it.

Inmyworkshops and inmy executive briefings, I tell managers they
should put their most talented people, aka architects, on the things
that are agile or lean impediments. For complex programs, those are
most often the build system and test automation. I suggest they use
the architects for several iterations to make significant progress on
those problems, and get to some version of done.

Youmay have different roles for your architect, especially if you are
integrating Commercial Off the Shelf (COTS) software or vendor-
supplied products:

• Act as editor-in-chief for architecture decisions on the team.
• Guide the individual feature team architects who do the
actual work.

• Help establish new products that are based on the archi-
tecture. This means understanding re-use, and establishing
a vision for how the architecture slowly evolves as new
products come and go. Can we harvest frameworks and
products from what we have now?

• Help the business people understand and take advantage of
the architecture for new system features, third-party inte-
grations, and new product lines. The architect might use the
product vision to discuss the relative value of features with
product owners and the value of frameworks with feature
teams.

You can see that people who have architecture responsibility shep-
herd the business value of the architecture. This is not the tra-
ditional “I’ll tell you how to build it because I know everything”
position that way too many architects take.

Shepherd the Agile Architecture 155

12.2 Many Developers Become
Architects

If architects write code, and if everyone owns the code, and we
get to the final product by refactoring—which is how agile works—
some substantial number of developers will work as architects at
any given time. If your teams also pair or swarm over the code, no
one will be able to tell who is the architect and who is not. That
works quite well.

You still may need a program architect who can discuss risks with
the business people, especially on the core team.

A program architect acts as a risk manager. She
is experienced and able to talk with business and
management with ease. She shepherds the business
value of the architecture.

In Avoid Hierarchical Titles, I suggested you don’t call a program
architect a “chief” architect. You want the architect to identify with
the program, not with the organization’s hierarchy. When you use
words such as chief, master, or über, you create or reinforce a
hierarchy.

Architects may need to coach other developers, especially in how
to create iterative and incremental designs—if they know how.

12.3 Encourage Iterative and
Incremental Architecture

Many developers and architects see the big picture of the architec-
ture, before they write any code. They know where they want to
go and they want to implement the entire feature, now. That’s not
helpful in an agile and lean program.

Shepherd the Agile Architecture 156

Instead, request that the architects collaborate on evolving the
picture of the architecture over time. If they see that they have
“curlicue” features, request that the architects collaborate with the
teams to simplify the teams and the features.

Sometimes, this might mean that the teams realize they don’t
have a cross-functional team that can deliver value. When the
teams realize this, they will agitate for change. Program managers
and program architects are technical leaders who can help the
teams reorganize themselves, if necessary. See The Teams Have
Dependencies on Other Teams for an explanation of straight and
curlicue features.

I have yet to see an architecture last from initial design through the
end of a program unchanged. Maybe you have.

The risks of totally designing an architecture are too high for an
agile and lean program. Help the architects learn how to create
features iteratively and incrementally.

Here’s one way to think about iterative and incremental archi-
tecture and design. Assume you have a product with a three-tier
architecture. People have a picture of the architecture and while
security pervades the product, the base security component is in
the Platform layer.

As everyone creates features, it appears that the base security
component is violating the Principle of Least Surprise and the
Single Responsibility Principle. (The Principle of Least Surprise says
that the product should act as the users expect it to. The Single
Responsibility Principle says that one component should do one,
and only one thing. Otherwise, you have coupling.)

This is a great time to refactor the code. Refactoring the code might
not be sufficient when security violates two principles. And, you
might refactor and discover performance problems. It’s time for
iterating on the architecture.

You have several options. Consider the options in Architects Can

Shepherd the Agile Architecture 157

Help Expose Risks and Break the Architecture with Purpose.

No one could tell at the beginning of the program that security—
as you planned it—would be a problem. The more the teams create
features and refactor to patterns, the less likely the product will have
a brittle architecture. With features first, everyone can contribute to
the architecture.

I recommend as part of the release criteria, the feature teams define
any performance or reliability criteria for the product or a piece of
the product.

12.4 Architects Can Help Expose Risks

Aside from iterative and incremental development, the program
architect can help expose risks. Maybe it’s worth the time for an
architectural spike to learn about some area of the product? Back
in Software is Learning, Not Construction, I said that we can learn
about risks early to manage them.

Some product features are quite difficult to refactor in. These
include scalability, some performance issues, and reliability to name
just three. Don’t proceed with just features when these quality
attributes are critical to your product’s success.

One way to manage these risks is to verify your roadmap has
a walking skeleton (also known as the tracer bullet) approach to
developing features. When you show feature teams and product
owners the walking skeleton, they will ask, “How fast is this part?”
or “How will this part scale from 300 to 30,000 users?” You now
understand their system qualities for performance or scalability.
You can adjust the system qualities as you proceed.

What if you need to know about some parts of the architecture first,
because they will drive other program tradeoffs? You might. For
example, in a smartphone, you might need to know the screen size

Shepherd the Agile Architecture 158

because that will drive the common GUI decisions and the heat
dissipation risks.

There are several options for this kind of a potential product prob-
lem. The solution you select might depend on the kind of product
you have, based on your product’s complexity. See Understand Your
Product’s Complexity. Here are some options that might work for
you:

• Do a pre-program research project. Bring together enough
people or teams to prototype the architecture that those
people believe will support the product you need. Once you
have enough information, start the program.

• Develop an architectural roadmap integrated with the pro-
gram roadmap, so you create features and manage architec-
tural risks as you proceed.

• Integrate architecture spikeswith feature development.Maybe
your program can still develop the operating system (the
platform), and can answer other questions as you proceed.

The larger the program, the more you want to see architectural
problems early. You can’t do that if you can’t show the product
working. What would it take for your program to show a walking
skeleton of working product? That is the question your product
owners and architects can answer.

12.5 What the Program Architect
Accomplishes Daily

Architects lead by doing. Sometimes they do the hard work to pay
down technical debt that’s been accumulating for years. Sometimes
they do the hard work of seeing how the features are evolving into
an eventual framework, or two or three. And, when you have 200

Shepherd the Agile Architecture 159

or 300 or 400 people on a program, all over the world, working
in 2-week iterations, you may well need people who explore just
ahead of feature teams, so that the feature teams are free to develop
features.

There is a difference between agile on a small program of about
three teams and agile on programs of more than 10 teams. Part of
it is the communication paths. No matter how much you try to
communicate, the larger program will have more communication
issues, just because there are more people.

Coordinating the design and architecture among very large pro-
grams is a non-trivial task. It’s partly managerial and partly tech-
nical. It’s also social and communication work. See Architecture is
a Social Activity.

Evolving the architecture is not a problem that a program can solve
with hierarchy and maintain agility. And it is a difficult problem to
solve. Communities of Practice can help.

Consider these options for an architect’s daily work:

1. Use an architectural kanban based on the agile roadmap.
Decide what risks the architecture wants to address now and
how.

2. Perform architectural spikes with a feature team. This helps
a team learn how the architect thinks about problems and
solutions. In addition, working with a team spreads the
architecture knowledge so everyone can work better.

3. Lead (and don’t direct) an Architecture Community of Prac-
tice. What do you want people to know, to evolve the
architecture in a coherent way? What architecture problems
do you want to raise?What do other people want to raise and
address?

4. Provide direct coaching to people who want it.

	frontofexcerpt
	shepherdagilearchitectureexcerpt

