

Agile and Lean Program
Management
Scaling Collaboration Across the
Organization

Johanna Rothman

ISBN 978-1-943487-04-2

No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and
retrieval system, without written permission from the author.

Every precaution was taken in the preparation of this book.
However, the author and publisher assumes no responsibility for
errors or omissions, or for damages that may result from the use of
information contained in this book.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Practical Ink was aware of a
trademark claim, the designations have been printed in initial

capital letters or in all capitals.

© 2016 Johanna Rothman

For my family. Thank you for your support.

Contents

Praise Quotes . i

Acknowledgments . iv

Foreword . v

Introduction . vii

1. Defining Agile and Lean Program Management . . . 1
1.1 Review the Twelve Principles of Agile Software

Development . 3
1.2 Review the Seven Lean Principles 4
1.3 Agile and Lean Together Create Adaptive Programs 4
1.4 A Program Is a Strategic Collection of Several

Projects . 5
1.5 Program Management Facilitates the Program to

Release . 6
1.6 Program Management Coordinates the Business

Value . 6
1.7 Agile Program Management Scales Collaboration 7
1.8 Agile and Lean Effect Change at the Program Level 9
1.9 What Program Managers Do 9
1.10 Take a Product Perspective 10
1.11 Principles of Agile and Lean Program Management 11

2. Consider Your Program Context 12

CONTENTS

2.1 Cynefin Helps with Decisions 12
2.2 Understand Your Product’s Complexity 16
2.3 Know Which Program Teams You Need 18
2.4 The Core Team Provides Business Leadership and

Value . 23
2.5 Do You Need a Core Team? 24
2.6 Principles of Consider Your Program Context . . . 25

3. Organize Your Program Teams 26
3.1 Create Your Core Team 26
3.2 Beware of Forgetting Core Team Members 28
3.3 The Product Owner Role Is Key to the Program’s

Success . 29
3.4 Organize the Software Program Team 31
3.5 Don’t Manage More than One Program Team

Yourself . 33
3.6 Principles of Organizing Your Program Teams . . 34

4. Start Your Program Right 35
4.1 A Program Charter Sets the Strategy 35
4.2 Develop the Program Charter with the Core Team 36
4.3 We Can’t Afford the Travel 37
4.4 Lead the Program Chartering Effort 38
4.5 Create Your Own Program Charter Template . . . 39
4.6 Iterate on the Program Charter and Plans 45
4.7 Create the Agile Roadmap 46
4.8 Create the Big Picture Roadmap 48
4.9 Principles of Start Your Program Right 50

5. Use Continuous Planning 52
5.1 Differentiate Between Internal and External Re-

leases . 52
5.2 What Do You Want to Release This Month? . . . 53
5.3 Create Minimum Releasables 54
5.4 Plan for External Releases 56

CONTENTS

5.5 Deliverable and Rolling Wave Planning Helps . . 57
5.6 Small is Beautiful for Programs 58
5.7 How Often Can You Replan? 59
5.8 Separate the Product Roadmap from the Project

Portfolio . 61
5.9 Ways to Rank Items in the Roadmap or Backlogs . 62
5.10 Decide How You Will Evaluate Value 67
5.11 Update the Roadmaps Often 68
5.12 Principles of Continuous Planning 68

6. Create an Environment of Delivery 70
6.1 Visualize Program Team Work 70
6.2 Keep the Program Team Work Small 72
6.3 How Features Flow Through Teams 73
6.4 How Often Can You Release Your Product? 74
6.5 Release Internally, Even with Hardware 75
6.6 Are You Integrating Chunks or Products From

Others? . 77
6.7 Manage the Risks of Integration from Other Vendors 78
6.8 Create a Culture of Delivery Throughout the Pro-

gram . 80
6.9 Principles of Create an Environment of Delivery . 80

7. Encourage Autonomy, Collaboration, and Exploration 81
7.1 Software is Learning, Not Construction 81
7.2 Scaling Agile Means Scaling Collaborative Practices 82
7.3 Create Autonomous Feature Teams 84
7.4 Create Small-World Networks to Optimize Learning 85
7.5 Communities of Practice Create Connection and

Collaboration . 87
7.6 Avoid Hierarchical Titles 88
7.7 Continuous Integration and Testing Supports Col-

laboration . 90
7.8 Beware of Technical Debt 92
7.9 Invite People to Experiment 93

CONTENTS

7.10 Principles of Encourage Autonomy, Collabora-
tion, and Exploration 93

8. Conduct Useful Meetings for Your Program 95
8.1 Explaining Status: Do Not Use Standups at the

Program Level 96
8.2 Define a Rhythm for Your Program Team 97
8.3 Organize Your Program Team Meetings 101
8.4 Program Team Meetings Solve Problems 103
8.5 Retrospect at the Program Team Level 106
8.6 Principles for Conduct Useful Meetings for Your

Program . 107

9. Estimating Program Schedule or Cost 108
9.1 Does Your Organization Want Resilience or Pre-

diction? . 109
9.2 Ask These Questions Before Estimating 110
9.3 Targets Beat Estimates 111
9.4 Generate an Estimate with a Percentage Confidence 111
9.5 Present Your Estimate as a Prediction 115
9.6 Spiral in on an Estimate 116
9.7 Supply a Three-Date Estimate 117
9.8 Do You Really Need an Estimate? 118
9.9 Beware of These Program Estimation Traps 118
9.10 Estimation Do’s and Don’ts for Program Managers 120
9.11 Principles of Estimating Schedule or Cost 122

10. Useful Measurements in an Agile and Lean Program 123
10.1 What Measurements Will Mean Something to

Your Program? 124
10.2 Never Use Team-BasedMeasurements for a Program 124
10.3 Measure by Features, Not by Teams 126
10.4 Measure Completed Features 128
10.5 Measure the Product Backlog Burnup 129
10.6 Measure the Time to Your Releasable Deliverable 132

CONTENTS

10.7 Measure Release Frequency 132
10.8 Measure Build Time 133
10.9 Other Potential Measurements 133
10.10 Measure Performance or Reliability Release Criteria 136
10.11 How toAnswer the “WhenWill You BeDone/How

Much Will Your Program Cost” Question 137
10.12 Principles . 139

11. Develop Your Servant Leadership 140
11.1 Program Managers No Longer “Drive” the Program 140
11.2 Consider Your Servant Leadership 141
11.3 How Servant Leaders Work 142
11.4 Some People Don’t Want Servant Leadership . . . 143
11.5 Welcome Bad News 145
11.6 Use the Growth Mindset 148
11.7 Ask For the Results You Want 148
11.8 Principles of Develop Your Servant Leadership: . . 150

12. Shepherd the Agile Architecture 151
12.1 Architects Write Code 152
12.2 Many Developers Become Architects 155
12.3 Encourage Iterative and Incremental Architecture 155
12.4 Architects Can Help Expose Risks 157
12.5 What the Program Architect Accomplishes Daily 158
12.6 Architecture is a Social Activity 160
12.7 Problems You May Encounter With Architecture . 161
12.8 Break the Architecture with Purpose 163
12.9 Principles of Shepherd the Agile Architecture . . . 164

13. Solve Program Problems 166
13.1 Ask For the Problems or Impediments First 166
13.2 People on the Core Team Don’t Deliver What

They Promise . 168
13.3 Your Product Owners Have Feature-itis 168
13.4 People on Teams Are Multitasking 170

CONTENTS

13.5 How to Start a Program With More People Than
You Need . 171

13.6 Principles of Solve Program Problems 173

14. Integrating Hardware Into Your Program 175
14.1 Hardware Risks Are Different Than Software Risks 175
14.2 Understand Cost and Value for Hardware 176
14.3 Understand Each Part’s Value 178
14.4 See the Work . 180
14.5 Design Incrementally and Iteratively 183
14.6 Use Continuous Design Review 183
14.7 Integrate Hardware Often 184
14.8 Manage Hardware Risks 185
14.9 Develop the Software Before the Hardware Is

Available . 186
14.10 Principles of Integrating Hardware Into Your Pro-

gram . 189

15. Troubleshooting Agile Team Issues 190
15.1 The Teams Are Not Feature Teams 190
15.2 Teams Think They Are Agile, But They Are Not . 194
15.3 The Teams Have Dependencies on Other Teams . 200
15.4 Your Features Span Several Iterations 203
15.5 You Don’t Have Frequent-Enough Deliverables . . 203
15.6 Teams Don’t Finish When They Say They Are Done 204
15.7 Principles of Troubleshooting Agile Team Issues . 206

16. Integrating Agile and Not-Agile Teams in Your Pro-
gram . 207
16.1 Waterfall Teams Are Part of Your Program 208
16.2 You Have Teams that Produce Incrementally, But

Not in an Agile Way 210
16.3 You Have Teams that Prototype and Don’t Com-

plete Features . 210

CONTENTS

16.4 Principles of IntegratingAgile andNot-Agile Teams
in Your Program 211

17. What to Do If Agile and Lean Are Not Right for You 212
17.1 Try an Incremental Life Cycle 213
17.2 Organize by Feature Team 216
17.3 Learn to Release Interim Deliverables 217
17.4 Learn How to Reduce Batch Size With a Large

Program . 217
17.5 Try Release Trains 218
17.6 Principles for What to Do if Agile and Lean Are

Not Right for You 221

Annotated Bibliography 223

Glossary . 228

More from Johanna . 231

5. Use Continuous Planning
You’ve seen how to create your first roadmap and maybe even the
first couple of product backlogs for any given team. Now, consider
how you will update the roadmap and backlogs.

As you replan, consider how small you can make the features
and minimum viable products. Your program will increase its
throughput as the batch size remains small.

5.1 Differentiate Between Internal and
External Releases

If you have continuous delivery, you can deliver something inter-
nally, to your organization, every day or multiple times a day. If you
don’t have continuous delivery, you might not be able to release
every day.

Release something internally to your organization at least once
a month. Releasing that often provides the entire program with
feedback. It also provides a cadence that others will find de-
pendable. When you release internally, you build trust across the
organization. It makes sense to release as often as possible.

Internal releases help the feature teams to obtain feedback about
the product. The internal releases will also show your management
and sponsors the value of your work. Internal releases show people
inside the organization what you have completed.

External releases show your customers what you have done. Exter-
nal releases are a business decision. Maybe your customer can take
the updated product now, maybe not. However, the teams still need
feedback on their work more often than once a quarter or whenever

52

Use Continuous Planning 53

your customer can take a release. This is why you need internal
releases at least as often as once a month.

You can release internally more often than once a month. Make the
once-a-month the minimum time between internal releases.

5.2 What Do You Want to Release This
Month?

Teams need small features so they can integrate and release often.
Even though you want to release something every month, it will be
small. What do you want to release this month?

Let’s assume you have two-week iterations. Two two-week itera-
tions fit into one month. If you work in three-week iterations, you
could release at the end of each iteration. If youwork in flow,maybe
you want to release every time you complete a feature, instead of
two weeks. Maybe you want to release when you have a minimum
viable product (MVP).

I assume you release internally at least as often as once a month.
More often is great. The more often you release internally, the
more everyone—the program participants, your sponsors, anyone
interested in your program—can see your progress. Everyone sees
feedback.

The less often you release, the more the feature teams have to
estimate. With more internal releases, the product owners can
change the backlogs. It’s a win-win.

Create internal releases so everyone can see program
progress. The larger the program, the more you need
frequent internal releases.

If you use continuous delivery, you might not need the one-quarter
agile roadmap as on Example of an Agile Roadmap for One Quarter.

Use Continuous Planning 54

Your program would release features faster than a product owner
could maintain the roadmap.

Consider the lack of frequent-enough delivery an impediment. See
if the feature teams can solve this problem, or if it is a program
issue.

5.3 Create Minimum Releasables

From the big roadmap, you can generate something that allows you
to see what yourminimum viable products, yourMVPs, are for each
internal release.

Maybe the product owners for a given feature set say something
like this, “We don’t have something minimum unless at least 80% of
the features exist.” They are correct when they consider an external
release. However, your program needs minimum internal releases.

Maybe instead of a minimum viable product, the product owners
can consider a Minimal Indispensable Feature Set, MIFS (BRO14).

MVPs or MIFS will vary in size. Each feature set might need
something different for an MVP.

“OurProductGrewDifferentlyOver
Time”
We had an email system as part of our product. We had an
MVP of basic get-and-send emails in our first MVP. But, we
didn’t do forwarding or attachments until our second internal
release. We didn’t do group emails until our third internal
release. We took other features from other feature sets, even
though we were the “email” team.

I was surprised that the team didn’t have such a difficult time
with that. I had a harder time because I was the product owner.

Use Continuous Planning 55

I wanted to finish the email system, already! But, the team saw
where the product roadmap was going, and it made sense to
them. They were okay with doing different features, and they
had fun with it.

They called themselves the “Email and… Team,” because they
did email and lots of other features. They said that knowing
their MVPs made a difference for them.

—A feature team product owner

Do not try to plan specifics of the feature sets/themes for more than
one quarter at a time. Even one-quarter is a ton of planning. Note
that you need to consider your MVPs for release.

If you restrict your planning to the MVPs for the internal releases
for a quarter: what has to be in your MVPs for each internal release
each quarter and then work towards that, you will do enough
planning for most projects.

If you release something every month, you never have to do big
release planning. If you update the agile roadmap every iteration,
or after every few features when teams work in flow, you can direct
the product development without big release planning. It’s all about
MVPs, minimum viable product. As long as you select your MVP
for the feature set, or for the entire product, and create small stories,
the teams will work towards that.

ContinuousDelivery andQuarterly
Planning
If you use continuous delivery, do you still need quarterly
planning? You might.

If you need to commit across the organization or to customers,

Use Continuous Planning 56

use a roadmap. The roadmap will show people the small items
for product direction now, and the larger items later. Everyone
can see the product direction.

The fact that you do continuous delivery makes it much
easier to deliver as needed and to commit to those predicted
deliverables.

The roadmap is a wish-list. The deliverables are the reality.

5.4 Plan for External Releases

If the product owners always define MVPs, and the teams always
deliver MVPs, and the MVPs move the product towards the release
criteria, no one has to worry about what goes into external releases.

If you have continuous delivery, you don’t have to worry about
external releases. You release all the time.

You have to worry about external releases when:

• The program doesn’t release all the time.
• The feature teams don’t do continuous integration and re-
lease what they have into the mainline.

• Teams work on architecture as opposed to features (when the
feature teams don’t create features).

If you get caught in these traps, the program has problems. Either
the teams have problems at the team level, or the entire program has
problems. The product owners can start addressing these problems
by creating MVPs and making sure the teams deliver value, not
architectural stories.

Use Continuous Planning 57

5.5 Deliverable and Rolling Wave
Planning Helps

Internal releases are deliverable-based planning. The product own-
ers specify the deliverable chunks they want to see. As the teams
finish the chunks, they can take more.

Rolling wave scheduling is this:

• Schedule your next deliverable. Make sure that deliverable is
no longer than two to four weeks away.

• At the end of your first week, schedule the next deliverable.
• Repeat, after each week.

Now you always have a two-to-four week schedule with deliver-
ables.

The teams can use iterations or flow. It doesn’t matter. Each team
has this responsibility: provide a constant flow of value without
incurring technical debt. See Continuous Integration and Testing
Supports Collaboration for more information about ways to remove
technical debt.

You or the program product owner might decide that the program
can take some technical debt to meet a specific deliverable. (I don’t
recommend this.) As part of your deliverable-based planning, add
the resolution of that debt to the product roadmap or a future
backlog.

Using rolling wave budgeting and incremental budgeting is espe-
cially helpful if you have people who want to know how much the
project will cost. You can update the spend and plan numbers with
every release.

Use Continuous Planning 58

5.6 Small is Beautiful for Programs

Some people think as you create an agile and lean program, it’s
difficult to have short iterations. They tell me that because more
people and teams are on the program, you need to make the
iterations longer.

The problem is this: the more you want the benefits of agile or lean,
the more you need feedback. The larger the program, the more
frequently you need feedback. Why? You do not want to drive
the company under while it is waiting for you to complete the
program. The longer it takes to get feedback on any feature or set of
features, the more difficult it is for the company to know whether
the program is succeeding.

The larger the program, the more the organization spends on your
work. You need to deliver—at every level—often. The value of
making progress every day is that everyone gets feedback. People
learn early if anyone is going down the wrong path. You don’t have
the opportunity to bankrupt your organization because you are not
delivering.

If you Review the Twelve Principles of Agile Software Develop-
ment, and Review the Seven Lean Principles, you can see that the
principles are about delivering working software, as fast as possible.
Shorter iterations allow you to do that.

What if the people on your teams think that short iterations encom-
pass overhead for planning and estimation and, even retrospectives?
There are several reasons for that.

• When you hear the word “overhead,” you are hearing some-
one who has not yet fully transitioned to agile. Overhead
is code for “we have impediments, and we don’t yet realize
what they are, so we call them overhead.” These impediments
might be large stories, and the lack of understanding that they
can spike a large story to break it into smaller chunks; or

Use Continuous Planning 59

it could be a misunderstanding of what a minimum viable
product could be.

• Those folks might not realize how little planning they need
to do, to complete small deliverables and achieve an internal
release each month.

• If your organization has not yet started to manage the project
portfolio, people are multitasking among several projects
or features. Under those conditions, you will have trouble
building and maintaining a program of small features.

• You have a complex product, so the teams extend their
iterations to more than twoweeks to achieve some form of an
MVP. I’ll talk more about this in Shepherd the Architecture.

What if you think the iterations need to be longer? If you think
planning is overhead, I bet you don’t have small stories, or that you
are trying to use estimation to manage the product roadmap or the
project portfolio.

Start thinking about value. Start thinking about the smallest feature
that will show everyone the progress of a feature or feature set.

5.7 How Often Can You Replan?

Continuous planning works in much the same way as continuous
integration. When the feature teams integrate all the time, code
integration is easier. When you replan all the time, the planning
takes less time and is easier.

When you use continuous planning, you don’t have to have big
plans. You can plan for the next iteration (or two). You can plan for
the next deliverable (or two). You never have to have everyone in
the same room for release planning.

As the product owners see and accept the features that the teams
complete in their backlogs, they can update the roadmap as a

Use Continuous Planning 60

product value team. Continuous planning avoids the need for a
large “let’s get everyone in the same room” to plan a quarter’s worth
of work.

Very few teams can plan for a quarter at a time and meet that plan.
Your program might have interruptions from operations/support,
the rank of some features might change, and teams encounter
problems every day. If you plan for a quarter, you are not likely
to accomplish everything you plan.

With continuous planning, you update the backlogs just in time and
keep your program open to change. The smaller your planning, the
more likely the teams are to be able to achieve the vision and release
criteria.

Keep planning small. With small stories, small plan-
ning, and small teams, your program is more likely
to have faster throughput and faster feedback. Small
and frequent planning helps your program be more
resilient.

The more you can move to continuous planning, the more agile and
lean your programwill be. The point of the roadmaps is to show the
team the big picture of the product, and how that vision changes
over time. The backlogs are the specifics for each team.

The more risk you have in your program, the more feedback you
need. The more you want to keep the sponsors engaged, the more
often you might have to change the roadmap—and by extension—
the backlogs.

If you want more feedback, release more often. Can you release
every day? If not every day, what impediments do you have for
creating an internal release at least once a month? As a program
manager, remove those impediments. Then you can ask the program
product owner to update the roadmap at least as often as once a
month.

Use Continuous Planning 61

“It’s not the Plan; It’s About Plan-
ning”
I used to use amorewaterfall approach tomy programs. I tried
to plan once and have it be “the plan of record” for the entire
program.

It didn’t work so well. I was always replanning. Then I
discovered rolling wave planning, and I learned about the
value of planning, where we discussed what we could do
when, and where the risks were, versus the actual plan, which
was always out of date the next day.

Now, I use our planning as a way to understand problems and
risks. I use the planning to help make decisions over the next
few weeks. I never expect the plan to last past a couple of
weeks. But I’m in better shape because of the risk discussions
we had.

—A senior program manager

Good planning, in the sense of providing a roadmap for the teams
and reflecting the current reality depends on more feedback, not
less. When you plan less often, you don’t see your current reality.
The plans become targets, instead of plans the teams can use to
guide their work.

5.8 Separate the Product Roadmap from
the Project Portfolio

The larger your program, the more you might have projects in the
form of feature sets to sequence. I like to think of this ranking as
a form of feature portfolio management. The sequencing occurs
when you say something like this, “We need to work on enough

	frontofexcerpt
	continuousplanningexcerpt

