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5. Use Continuous Planning
You’ve seen how to create your first roadmap and maybe even the
first couple of product backlogs for any given team. Now, consider
how you will update the roadmap and backlogs.

As you replan, consider how small you can make the features
and minimum viable products. Your program will increase its
throughput as the batch size remains small.

5.1 Differentiate Between Internal and
External Releases

If you have continuous delivery, you can deliver something inter-
nally, to your organization, every day or multiple times a day. If you
don’t have continuous delivery, you might not be able to release
every day.

Release something internally to your organization at least once
a month. Releasing that often provides the entire program with
feedback. It also provides a cadence that others will find de-
pendable. When you release internally, you build trust across the
organization. It makes sense to release as often as possible.

Internal releases help the feature teams to obtain feedback about
the product. The internal releases will also show your management
and sponsors the value of your work. Internal releases show people
inside the organization what you have completed.

External releases show your customers what you have done. Exter-
nal releases are a business decision. Maybe your customer can take
the updated product now, maybe not. However, the teams still need
feedback on their work more often than once a quarter or whenever

52
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your customer can take a release. This is why you need internal
releases at least as often as once a month.

You can release internally more often than once a month. Make the
once-a-month the minimum time between internal releases.

5.2 What Do You Want to Release This
Month?

Teams need small features so they can integrate and release often.
Even though you want to release something every month, it will be
small. What do you want to release this month?

Let’s assume you have two-week iterations. Two two-week itera-
tions fit into one month. If you work in three-week iterations, you
could release at the end of each iteration. If youwork in flow,maybe
you want to release every time you complete a feature, instead of
two weeks. Maybe you want to release when you have a minimum
viable product (MVP).

I assume you release internally at least as often as once a month.
More often is great. The more often you release internally, the
more everyone—the program participants, your sponsors, anyone
interested in your program—can see your progress. Everyone sees
feedback.

The less often you release, the more the feature teams have to
estimate. With more internal releases, the product owners can
change the backlogs. It’s a win-win.

Create internal releases so everyone can see program
progress. The larger the program, the more you need
frequent internal releases.

If you use continuous delivery, you might not need the one-quarter
agile roadmap as on Example of an Agile Roadmap for One Quarter.
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Your program would release features faster than a product owner
could maintain the roadmap.

Consider the lack of frequent-enough delivery an impediment. See
if the feature teams can solve this problem, or if it is a program
issue.

5.3 Create Minimum Releasables

From the big roadmap, you can generate something that allows you
to see what yourminimum viable products, yourMVPs, are for each
internal release.

Maybe the product owners for a given feature set say something
like this, “We don’t have something minimum unless at least 80% of
the features exist.” They are correct when they consider an external
release. However, your program needs minimum internal releases.

Maybe instead of a minimum viable product, the product owners
can consider a Minimal Indispensable Feature Set, MIFS (BRO14).

MVPs or MIFS will vary in size. Each feature set might need
something different for an MVP.

“OurProductGrewDifferentlyOver
Time”
We had an email system as part of our product. We had an
MVP of basic get-and-send emails in our first MVP. But, we
didn’t do forwarding or attachments until our second internal
release. We didn’t do group emails until our third internal
release. We took other features from other feature sets, even
though we were the “email” team.

I was surprised that the team didn’t have such a difficult time
with that. I had a harder time because I was the product owner.
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I wanted to finish the email system, already! But, the team saw
where the product roadmap was going, and it made sense to
them. They were okay with doing different features, and they
had fun with it.

They called themselves the “Email and… Team,” because they
did email and lots of other features. They said that knowing
their MVPs made a difference for them.

—A feature team product owner

Do not try to plan specifics of the feature sets/themes for more than
one quarter at a time. Even one-quarter is a ton of planning. Note
that you need to consider your MVPs for release.

If you restrict your planning to the MVPs for the internal releases
for a quarter: what has to be in your MVPs for each internal release
each quarter and then work towards that, you will do enough
planning for most projects.

If you release something every month, you never have to do big
release planning. If you update the agile roadmap every iteration,
or after every few features when teams work in flow, you can direct
the product development without big release planning. It’s all about
MVPs, minimum viable product. As long as you select your MVP
for the feature set, or for the entire product, and create small stories,
the teams will work towards that.

ContinuousDelivery andQuarterly
Planning
If you use continuous delivery, do you still need quarterly
planning? You might.

If you need to commit across the organization or to customers,
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use a roadmap. The roadmap will show people the small items
for product direction now, and the larger items later. Everyone
can see the product direction.

The fact that you do continuous delivery makes it much
easier to deliver as needed and to commit to those predicted
deliverables.

The roadmap is a wish-list. The deliverables are the reality.

5.4 Plan for External Releases

If the product owners always define MVPs, and the teams always
deliver MVPs, and the MVPs move the product towards the release
criteria, no one has to worry about what goes into external releases.

If you have continuous delivery, you don’t have to worry about
external releases. You release all the time.

You have to worry about external releases when:

• The program doesn’t release all the time.
• The feature teams don’t do continuous integration and re-
lease what they have into the mainline.

• Teams work on architecture as opposed to features (when the
feature teams don’t create features).

If you get caught in these traps, the program has problems. Either
the teams have problems at the team level, or the entire program has
problems. The product owners can start addressing these problems
by creating MVPs and making sure the teams deliver value, not
architectural stories.
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5.5 Deliverable and Rolling Wave
Planning Helps

Internal releases are deliverable-based planning. The product own-
ers specify the deliverable chunks they want to see. As the teams
finish the chunks, they can take more.

Rolling wave scheduling is this:

• Schedule your next deliverable. Make sure that deliverable is
no longer than two to four weeks away.

• At the end of your first week, schedule the next deliverable.
• Repeat, after each week.

Now you always have a two-to-four week schedule with deliver-
ables.

The teams can use iterations or flow. It doesn’t matter. Each team
has this responsibility: provide a constant flow of value without
incurring technical debt. See Continuous Integration and Testing
Supports Collaboration for more information about ways to remove
technical debt.

You or the program product owner might decide that the program
can take some technical debt to meet a specific deliverable. (I don’t
recommend this.) As part of your deliverable-based planning, add
the resolution of that debt to the product roadmap or a future
backlog.

Using rolling wave budgeting and incremental budgeting is espe-
cially helpful if you have people who want to know how much the
project will cost. You can update the spend and plan numbers with
every release.
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5.6 Small is Beautiful for Programs

Some people think as you create an agile and lean program, it’s
difficult to have short iterations. They tell me that because more
people and teams are on the program, you need to make the
iterations longer.

The problem is this: the more you want the benefits of agile or lean,
the more you need feedback. The larger the program, the more
frequently you need feedback. Why? You do not want to drive
the company under while it is waiting for you to complete the
program. The longer it takes to get feedback on any feature or set of
features, the more difficult it is for the company to know whether
the program is succeeding.

The larger the program, the more the organization spends on your
work. You need to deliver—at every level—often. The value of
making progress every day is that everyone gets feedback. People
learn early if anyone is going down the wrong path. You don’t have
the opportunity to bankrupt your organization because you are not
delivering.

If you Review the Twelve Principles of Agile Software Develop-
ment, and Review the Seven Lean Principles, you can see that the
principles are about delivering working software, as fast as possible.
Shorter iterations allow you to do that.

What if the people on your teams think that short iterations encom-
pass overhead for planning and estimation and, even retrospectives?
There are several reasons for that.

• When you hear the word “overhead,” you are hearing some-
one who has not yet fully transitioned to agile. Overhead
is code for “we have impediments, and we don’t yet realize
what they are, so we call them overhead.” These impediments
might be large stories, and the lack of understanding that they
can spike a large story to break it into smaller chunks; or
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it could be a misunderstanding of what a minimum viable
product could be.

• Those folks might not realize how little planning they need
to do, to complete small deliverables and achieve an internal
release each month.

• If your organization has not yet started to manage the project
portfolio, people are multitasking among several projects
or features. Under those conditions, you will have trouble
building and maintaining a program of small features.

• You have a complex product, so the teams extend their
iterations to more than twoweeks to achieve some form of an
MVP. I’ll talk more about this in Shepherd the Architecture.

What if you think the iterations need to be longer? If you think
planning is overhead, I bet you don’t have small stories, or that you
are trying to use estimation to manage the product roadmap or the
project portfolio.

Start thinking about value. Start thinking about the smallest feature
that will show everyone the progress of a feature or feature set.

5.7 How Often Can You Replan?

Continuous planning works in much the same way as continuous
integration. When the feature teams integrate all the time, code
integration is easier. When you replan all the time, the planning
takes less time and is easier.

When you use continuous planning, you don’t have to have big
plans. You can plan for the next iteration (or two). You can plan for
the next deliverable (or two). You never have to have everyone in
the same room for release planning.

As the product owners see and accept the features that the teams
complete in their backlogs, they can update the roadmap as a
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product value team. Continuous planning avoids the need for a
large “let’s get everyone in the same room” to plan a quarter’s worth
of work.

Very few teams can plan for a quarter at a time and meet that plan.
Your program might have interruptions from operations/support,
the rank of some features might change, and teams encounter
problems every day. If you plan for a quarter, you are not likely
to accomplish everything you plan.

With continuous planning, you update the backlogs just in time and
keep your program open to change. The smaller your planning, the
more likely the teams are to be able to achieve the vision and release
criteria.

Keep planning small. With small stories, small plan-
ning, and small teams, your program is more likely
to have faster throughput and faster feedback. Small
and frequent planning helps your program be more
resilient.

The more you can move to continuous planning, the more agile and
lean your programwill be. The point of the roadmaps is to show the
team the big picture of the product, and how that vision changes
over time. The backlogs are the specifics for each team.

The more risk you have in your program, the more feedback you
need. The more you want to keep the sponsors engaged, the more
often you might have to change the roadmap—and by extension—
the backlogs.

If you want more feedback, release more often. Can you release
every day? If not every day, what impediments do you have for
creating an internal release at least once a month? As a program
manager, remove those impediments. Then you can ask the program
product owner to update the roadmap at least as often as once a
month.
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“It’s not the Plan; It’s About Plan-
ning”
I used to use amorewaterfall approach tomy programs. I tried
to plan once and have it be “the plan of record” for the entire
program.

It didn’t work so well. I was always replanning. Then I
discovered rolling wave planning, and I learned about the
value of planning, where we discussed what we could do
when, and where the risks were, versus the actual plan, which
was always out of date the next day.

Now, I use our planning as a way to understand problems and
risks. I use the planning to help make decisions over the next
few weeks. I never expect the plan to last past a couple of
weeks. But I’m in better shape because of the risk discussions
we had.

—A senior program manager

Good planning, in the sense of providing a roadmap for the teams
and reflecting the current reality depends on more feedback, not
less. When you plan less often, you don’t see your current reality.
The plans become targets, instead of plans the teams can use to
guide their work.

5.8 Separate the Product Roadmap from
the Project Portfolio

The larger your program, the more you might have projects in the
form of feature sets to sequence. I like to think of this ranking as
a form of feature portfolio management. The sequencing occurs
when you say something like this, “We need to work on enough
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