


Agile and Lean Program 
Management
Scaling Collaboration Across the 
Organization

Johanna Rothman

ISBN 978-1-943487-04-2

No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and
retrieval system, without written permission from the author.

Every precaution was taken in the preparation of this book.
However, the author and publisher assumes no responsibility for
errors or omissions, or for damages that may result from the use of
information contained in this book.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Practical Ink was aware of a
trademark claim, the designations have been printed in initial



capital letters or in all capitals.

© 2016 Johanna Rothman



2. Consider Your Program
Context

You and all the members of your program will make multiple
decisions on a daily basis. The Cynefin Framework is a way of
thinking about your context with the intent of guiding your actions.
I use Cynefin to think about how I solve problems: Can we use
good practices that everyone else uses? Do we need to experiment
to know how to proceed? Do we have so many unknowns that we
don’t know where to start?

2.1 Cynefin Helps with Decisions

The Cynefin Framework (SNB07) is a sense-making framework you
can use to solve problems. Use it to guide your approach to your
program.

12



Consider Your Program Context 13

Cynefin Framework

Based on the fact you are working in a program, you are not in
the Obvious context. A program, by its very nature, is at least in
the Complicated context, because of the number of communication
paths.

If everyone is in a single physical location, you may be in the
Complicated context. In the Complicated context, you can see
straight cause-and-effect relationships among the different stresses
in your program. If all your teams are experienced agile or lean
teams, who know how to deliver small stories each day or so, you
might be in the Complicated context. You understand what your
unknowns are. You can use known and reasonable practices for
organizing and working on your agile program.

As soon as you and the people in your program are not in the same
location, you are no longer in the Complicated context. You have
moved into either the Complex or Chaotic context. That’s because
your communication will have delivery or communication lags and
other interferences. Problem causes or effects may be unclear and
even unknown, if only due to communication lags.



Consider Your Program Context 14

If people on your program are multitasking, or if you have people or
teams who can’t commit to the program, or if many of your feature
teams are new to agile, you are at least in the Complex context.
You may be in the Chaotic context. In either of these contexts, the
unknowns create many risks and potential problems.

In my experience, if you can say, “We have done work like this,
but never at this complexity or with this many teams, or never as
distributed as we are now,” you are in the Complex context. You
have many unknown unknowns. You will have to manage the risk
of those unknowns.

As you look at the Cynefin Framework, ask yourself: what context
reflects your reality? Howwill that context help you decidewhether
you should sense, probe, or act as an experiment first?

If you are in the Complicated part of the framework, you need
experts to solve the problems in your program. I’m not talking
about experts that create bottlenecks by working alone. Instead,
develop a community of experts—maybemost of the people on your
program, working in their Communities of Practice—to help solve
the problems.

If you are in the Complex part of the framework, consider these
actions: What experiments will you use to probe, to discover your
unknowns? And, what problems can you solve tomove the program
back to the Complicated part of the framework, where you can
know your challenges?

Cynefin is not a two-by-twomatrixwhere you locate your program,
use that to make decisions, and never return to the framework.
Instead, especially with programs of nine teams or more, different
parts of the program will have different challenges. The more
unknowable the challenges, the more that part of the program is in
the Complex part of the framework. As the teams deliver features,
they learnmore. That part of the programmoves to the Complicated
part of the framework.



Consider Your Program Context 15

Sometimes, teams in the Complicated part of the framework finish
features. As they learn, they uncover a huge “gotcha.” That might
cause them to be in the Complex part of the framework until they
run some experiments to see what they can do.

As a programmanager, how can you identify issues early when you
encounter Complex again? How can you help the program move
from Complex to Complicated?

There are no easy answers. There is no recipe. This is work. It’s the
reason why we need program management, to recognize and solve
problems across the organization.

The Cynefin Framework reveals why agile program management
can be difficult. As teams complete their features, the product
owners need to update the roadmap and the backlogs. It’s possible
the program will finish before expected. Completing—or not—other
projects or programsmay affect the organization’s project portfolio.
Certainly, one team’s feature completion might affect the ability of
other teams to deliver.

Regardless of your context, a program is emergent. With emergent
projects, you can’t plan everything at the beginning. You can see a
roadmap, plan a little, and continue learning and adapting as you
proceed. You might want to keep the same vision of the product,
but teams (with their product owners) might select different work.
Or, as your customers/product owners see the product, they might
want to change the product direction.

If the teams don’t complete features on a short, regular basis, no one
can understand what the program status is. If the core team doesn’t
solve problems that allow the program to create a product, you have
plenty of risks, many of them unknown.

Manage by principles, not practices.



Consider Your Program Context 16

With your risks, consider principles for your program, not practices.
I could try to create a recipe for you, but that won’t work. Think and
recognize your context.

2.2 Understand Your Product’s
Complexity

Your program is unique. Your program may have complexity in a
variety of areas: architecture, pressure to release, where the people
sit in relationship to each other, the languages everyone uses, and
each team’s agility.

In my experience, the overall architecture of your product can drive
much of the complexity. The more complex the architecture and
the larger your program is, the more complexity you will have to
manage. Here are some program architectures I have seen.

Large Program, One Coherent Product

In this case, you have one large product. It’s not integrating other
products or systems. Your program creates the entire product. It’s
big with multiple feature teams, which is why you have complexity
in your program.

As an example, an operating system might look like one coherent



Consider Your Program Context 17

product. Maybe a large web-based store might look like one coher-
ent product.

Inter-related products are different. If you ever say, “Platform and
layered products,” you have an example of an inter-related product.

Inter-Related Product Program

In this case, you have a platform of common services with what feel
to the customer as separate products. The GUIs may have their own
look and feel, but the GUI is not common across your program’s
product.

As an example, a smartphone is an integrated system product. Each
app on the phone has its own GUI where you set the preferences
and use the app. Each app uses services from the phone’s operating
system.

Sometimes, inter-related products integrate other products into the
one product.

It’s more likely if you integrate other vendors’ products into your
own, that you have an integrated system program.



Consider Your Program Context 18

Integrated System Product Program

In this case, customers buy your entire product. The product still
has the platform of common services. However, you have one
coherent GUI that the products have to integrate with. You might
be integrating systems or hardware from vendors.

These programs tend to need programs of programs. Different
products will run on their own schedule. Unless your vendors are
also agile and lean, you may have to manage integration risks.

2.3 Know Which Program Teams You
Need

Every program needs the ability to work across the organization.
You might need a core team, the cross-functional business team that
has members from all around the organization. The core team helps
coordinate the efforts that make the entire product a successful
deliverable.



Consider Your Program Context 19

If you have more than two feature teams, you might also need a
software program team. The software program team helps deliver
the working software. The software program manager is a delegate
to the core program team. That means that the software program
manager must have a program team of his/her own. This is true for
a large program.

You, as a program manager, need to understand which program
teams you need. Does your program require both a core team and a
software program team?Do you need a core team programmanager
and a software program team manager?

You can only manage one program team. One of the problems I
see in too many agile programs is that they have neither a core
team nor a software program team. They have many feature or
component teams. They might have Scrum-of-Scrum meetings, but
no real forum for solving the deep problems or managing the risks
that can occur across the organization.

Each program team has a responsibility to solve problems that the
teams it represents can’t solve by themselves. The program team,
whether it is a core team or a software program team, works across
the organization, solving problems and removing obstacles for the
program.



Consider Your Program Context 20

What Your Core Team Might Look Like

If you are coordinating and collaborating across the entire organi-
zation, you are managing or are a part of the core team. If you take
a look at the What Your Core Team Might Look Like, you can see
that there are plenty of potential participants on this program team.

Aside from the program manager, there is the software program
manager, the potential hardware program manager, the program
product owner, as well as the sales, deployment, legal, marketing,
finance, human resources, and investor relations project managers.
And those are only the people I could imagine. There might be other
or different people in your organization.

Do You Have A Process Program?
Sometimes, organizations run process improvement projects,
such as transitioning to agile, as if they are programs. That’s
fine. In this, your core team will look different. You might not
have feature teams in your program.



Consider Your Program Context 21

Know what kind of a program you have. Not all programs are
the same. Use a core team that makes sense for your program.

What Your Software Program Team Might Look Like

Take a look at What Your Software Program TeamMight Look Like
to see a prototype composition.

Notice that the program product owner and the program architect
might work as a triad with the software program manager to make
risk decisions. Does this mean that the program product owner does
not work with the core program manager?

It depends. It depends on who needs the program product owner.
Maybe you need a product owner team, and the program product
owner works with the core team and the technical product owner
works with the software program owner. It depends on what your
program needs.

Look at the program architect. Your feature teams need their




