

GROWING
RAILS APPLICATIONS
IN PRACTICE
Structure large Ruby on Rails apps using the tools
you already know and love.

By Henning Koch and Thomas Eisenbarth

©2013 2016 makandra GmbH

2. Beautiful controllers
Let’s talk about controllers. Nobody loves their controllers.

When a developer learns about MVC for the first time, she will quickly understand the purpose of
models and views. But working with controllers remains awkward:

• It is hard to decide whether a new bit of functionality should go into your controller or
into your model. Should the model send a notification e-mail or is that the controller’s
responsibility? Where to put support code that handles the differences between model and
user interface?

• Implementing custom mappings between a model and a screen requires too much controller
code. Examples for this are actions that operate on multiple models, or a form that has
additional fields not contained in the model. It is too cumbersome to support basic interactions
like a “form roundtrip”, where an invalid form is displayed again with the offending fields
highlighted in red.

• Any kind of code put into a controller might as well sit behind a glass wall. You can see
it, but it is hard to test and experiment with it. Running controller code requires a complex
environment (request, params, sessions, etc.) which Rails must conjure for you. This makes
controllers an inaccessible habitat for any kind of code.

• Lacking clear guidelines for designing controllers, no two controllers are alike. This makes
working on existing UI a chore, since you have to understand how data flows through each
individual controller.

We cannot make controllers go away. However, by following a few simple guidelines we can reduce
the importance of controllers in our application and move controller code to a better place. Because
the less business logic is buried inside controllers, the better.

The case for consistent controller design

Ruby on Rails has few conventions for designing a controller class. There are no rules how to
instantiate model classes or how we deal with input errors. The result is a controllers folder where
every class works a little differently.

This approach does not scale. When every controller follows a different design, a developer needs
to learn a new micro API for every UI interaction she needs to change.

A better approach is to use a standard controller design for every single user interaction.

5

Beautiful controllers 6

This reduces the mental overhead required to navigate through a large Rails application and
understand what is happening. If you knew the layout of a controller class before you even open the
file, you could focus on models and views. That is our goal.

Having a default design approach also speeds up development of new controllers by removing
implementation decisions. You always decide to use CRUD and quickly move on to the parts of
your application you really care about: Your models and views.

This point becomes more important as your team grows, or once your application becomes too large
to fit into your head entirely.

Normalizing user interactions

How to come up with a default controller design when your application has many different kinds of
user interactions? The pattern we use is to reduce every user interaction to a Rails CRUD resource¹.
We employ this mapping even if the user interface is not necessarily a typical CRUD interface at
first glance.

Even interactions that do not look like plain old CRUD resources can be modeled as such. A screen to
cancel a subscription can be thought of as destroying a subscription or creating a new cancellation.
A screen to upload multiple images at once can be seen as creating an image batch (even if there is
no ImageBatch model).

By normalizing every user interaction to a CRUD interaction, we can design a beautiful controller
layout and reuse it again and again with little changes.

A better controller implementation

When we take over maintenance for existing Rails projects, we often find unloved controllers, where
awkward glue code has been paved over and over again, negotiating between request and model in
the most unholy of protocols.

It does not have to be that way. We believe that controllers deserve better:

• Controllers should receive the same amount of programming discipline as any other type of
class. They should be short, DRY² and easy to read.

• Controllers should provide the minimum amount of glue code to negotiate between request
and model.

• Unless there are good reasons against it, controllers should be built against a standard, proven
implementation blueprint.

¹http://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
²http://en.wikipedia.org/wiki/Don’t_repeat_yourself

http://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
http://en.wikipedia.org/wiki/Don't_repeat_yourself

Beautiful controllers 7

What is a controller implementation that is so good you want to use it over and over again? Of
course Rails has always included a scaffold script that generates controller code. Unfortunately
that generated controller is unnecessarily verbose and not DRY at all.

Instead we use the following standard implementation for a controller that CRUDs an ActiveRecord
(or ActiveModel) class:

class NotesController < ApplicationController

def index

load_notes

end

def show

load_note

end

def new

build_note

end

def create

build_note

save_note or render 'new'

end

def edit

load_note

build_note

end

def update

load_note

build_note

save_note or render 'edit'

end

def destroy

load_note

@note.destroy

redirect_to notes_path

end

Beautiful controllers 8

private

def load_notes

@notes ||= note_scope.to_a

end

def load_note

@note ||= note_scope.find(params[:id])

end

def build_note

@note ||= note_scope.build

@note.attributes = note_params

end

def save_note

if @note.save

redirect_to @note

end

end

def note_params

note_params = params[:note]

note_params ? note_params.permit(:title, :text, :published) : {}

end

def note_scope

Note.all

end

end

Note a couple of things about the code above:

• The controller actions are delegating most of their work to helper methods like load_note or
build_note. This allows us to not repeat ourselves and is a great way to adapt the behavior
of multiple controller actions by changing a single helper method. For example if you want
to place some restriction on how objects are created, you probably want to apply the same
restriction on how objects are updated. It also facilitates the DRY implementation of custom
controller actions (like a search action, not visible in the example).

• There is a privatemethod note_scopewhich is used by all member actions (show, edit, update,
and destroy) to load a Notewith a given ID. It is also used by index to load the list of all notes.

Beautiful controllers 9

Note how at no point does an action talk to the Note model directly. By having note_scope

guard access to the Notemodel, we have a central place to control which records this controller
can show, list or change. This is a great technique to implement authorization schemes³
where access often depends on the current user. E.g. if we only wanted users to read and
change their own notes, we could simply have note_scope return Note.where(author_id:

current_user.id). No other changes required.
• There is a private method note_params that returns the attributes that can be set through the
update and create actions. Note how that method uses strong parameters⁴ to whitelist the
attributes that the user is allowed to change. This way we do not accidentally allow changing
sensitive attributes, such as foreign keys or admin flags. Strong parameters are available in
Rails 4+. If you are on Rails 3 you can use the strong_parameters gem⁵ instead. And if you
are on Rails 2 LTS⁶ you can use Hash#slice⁷ to a similar effect. In any case we recommend
such an approach in lieu of the attr_accessible pattern that used to be the default in older
Rails versions. The reason is that authorization does not belong into the model, and it is really
annoying to have attribute whitelisting get in your way when there is not even a remote user
to protect from (e.g. the console, scripts, or background jobs).

• Every controller action reads or changes a single model. Even if an update involves multiple
models, the job of finding and changing the involved records should be pushed to an
orchestrating model. You can do so with nested forms⁸ or form models (which we will learn
about in a later chapter). By moving glue code from the controller into the model it becomes
easier to test and reuse.

• Although the controller from the code example maps directly to an ActiveRecord model called
Note, this is by no means a requirement. For instance, you might want to use a custom model
for forms that are complicated or do not persist to a database. This book will equip you with
various techniques for providing a mapping between a user interface and your core domain
models.

Why have controllers at all?

We advocate a very simple and consistent controller design that pushes a lot of code into the model.
One might ask: Why have controllers at all? Can’t we conjure some Ruby magic that automatically
maps requests onto our model?

Well, no. There are still several responsibilities left that controllers should handle:

• Security (authentication, authorization)

³Also see our talk: Solving bizarre authorization requirements with Rails.
⁴http://api.rubyonrails.org/classes/ActionController/StrongParameters.html
⁵https://github.com/rails/strong_parameters
⁶https://railslts.com
⁷http://apidock.com/rails/Hash/slice
⁸http://api.rubyonrails.org/classes/ActiveRecord/NestedAttributes/ClassMethods.html

http://api.rubyonrails.org/classes/ActionController/StrongParameters.html
https://github.com/rails/strong_parameters
https://railslts.com
http://apidock.com/rails/Hash/slice
http://api.rubyonrails.org/classes/ActiveRecord/NestedAttributes/ClassMethods.html
http://bizarre-authorization.talks.makandra.com/
http://api.rubyonrails.org/classes/ActionController/StrongParameters.html
https://github.com/rails/strong_parameters
https://railslts.com
http://apidock.com/rails/Hash/slice
http://api.rubyonrails.org/classes/ActiveRecord/NestedAttributes/ClassMethods.html

Beautiful controllers 10

• Parsing and white-listing parameters
• Loading or instantiating the model
• Deciding which view to render

That code needs to go somewhere and the controller is the right place for it.

However, a controller never does the heavy lifting. Controllers should contain the minimum
amount of glue to translate between the request, your model and the response.

We will learn techniques to extract glue code into classes in “User interactions without a database”
and “A home for interaction-specific code”.

But before we do that, we need to talk about ActiveRecord.

A note on controller abstractions
There are gems like Inherited Resources or Resource Controller that generate a uniform controller
implementation for you. For instance the following code would give you a fully implemented
UsersController with the seven RESTful default actions with a single line of code:

class UsersController < ResourceController::Base

end

When Ruby loads the UsersController class, Resource Controller would dynamically generate a
default implementation for your controller actions.

Following the idea of convention over configuration, one would reconfigure the default implemen-
tation only if needed:

class UsersController < ResourceController::Base

create.after do

Mailer.welcome(@user).deliver

end

end

We used to like this idea a lot. However, having used it in several large projects, we now prefer
to write out controllers manually again. Here are some reasons why we no longer like to use
resource_controller and friends:

https://github.com/josevalim/inherited_resources
https://github.com/makandra/resource_controller
http://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
https://makandracards.com/makandra/637-default-implementation-of-resource_controller-actions

Beautiful controllers 11

Configuration can be very awkward
Many things that have a natural place in a hand-written controller are awkward to write in a
controller abstraction. For example using a different model for new/create and edit/update is
almost impossible to implement using the configuration options of Resource Controller.

Too much magic
We rotate on projects a lot. Often new developers on projects using gems such as InheritedResources
have a hard time understanding what is happening: Which methods are generated automatically?
How do I disable them if not all of them are necessary? Which configuration options do exist? At
the end of the day, we saw colleagues spending more time reading documentation than writing
code. It’s simply too much magic, too much implicit behavior.

Controller abstractions can be useful if you know their pros and cons. We are using them only in
very simple CRUD apps with extremely uniform user interfaces.

https://github.com/josevalim/inherited_resources
https://github.com/makandra/resource_controller
http://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
https://makandracards.com/makandra/637-default-implementation-of-resource_controller-actions

https://github.com/josevalim/inherited_resources
https://github.com/makandra/resource_controller
http://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
https://makandracards.com/makandra/637-default-implementation-of-resource_controller-actions

