


GROWING
RAILS APPLICATIONS
IN PRACTICE
Structure large Ruby on Rails apps using the tools 
you already know and love.

By Henning Koch and Thomas Eisenbarth

©2013  2016 makandra GmbH 



8. Organizing large codebases with
namespaces

As a Rails application grows, so does its app/models folder. We’ve seen applications grow to
hundreds of models. With an app/models directory that big, it becomes increasingly hard to
navigate. Also it becomes near-impossible to understand what the application is about by looking at
the models folder, where the most important models of your core domain sit next to some support
class of low significance.

A good way to not drown in a sea of .rb files is to aggressively namespace models into sub-folders.
This doesn’t actually reduce the number of files of course, but makes it much easier to browse
through your model and highlights the important parts.

Namespacing a model is easy. Let’s say we have an Invoice class and each invoice can have multiple
invoice items:

class Invoice < ActiveRecord::Base

has_many :items

end

class Item < ActiveRecord::Base

belongs_to :invoice

end

Clearly Invoice is a composition of Items and an Item cannot live without a containing Invoice.
Other classes will probably interact with Invoice and not with Item. So let’s get Item out of the
way by nesting it into the Invoice namespace. This involves renaming the class to Invoice::Item

and moving the source file to app/models/invoice/item.rb:

app/models/invoice/item.rb

class Invoice::Item < ActiveRecord::Base

belongs_to :invoice

end

What might seem like a trivial refactoring has great effects a few weeks down the road. It is a nasty
habit of Rails teams to avoid creating many classes, as if adding another file was an expensive thing
to do. And in fact making a huge models folder even larger is something that does not feel right.

But since the models/invoice folder already existed, your team felt encouraged to create other
invoice-related models and place them into this new namespace:

44



Organizing large codebases with namespaces 45

File Class

app/models/invoice.rb Invoice

app/models/invoice/item.rb Invoice::Item

app/models/invoice/reminder.rb Invoice::Reminder

app/models/invoice/export.rb Invoice::Export

Note how the namespacing strategy encourages the use of Service Objects in lieu of fat models that
contain more functionality than they should.

Real-world example

In order to visualize the effect that heavy namespacing has on a real-world-project, we refactored
one of our oldest applications, which was created in a time when we didn’t use namespacing.

Here is the models folder before refactoring:

app/models before refactoring

activity.rb

amortization_cost.rb

api_exchange.rb

api_schema.rb

budget_calculator.rb

budget_rate_budget.rb

budget.rb

budget_template_group.rb

budget_template.rb

business_plan_item.rb

business_plan.rb

company.rb

contact.rb

event.rb

fixed_cost.rb

friction_report.rb

internal_working_cost.rb

invoice_approval_mailer.rb

invoice_approval.rb

invoice_item.rb

invoice.rb

invoice_settings.rb

invoice_template.rb

invoice_template_period.rb

listed_activity_coworkers_summary.rb



Organizing large codebases with namespaces 46

note.rb

person.rb

planner_view.rb

profit_report_settings.rb

project_filter.rb

project_link.rb

project_profit_report.rb

project_rate.rb

project.rb

project_summary.rb

project_team_member.rb

project_type.rb

rate_group.rb

rate.rb

revenue_report.rb

review_project.rb

review.rb

staff_cost.rb

stopwatch.rb

task.rb

team_member.rb

third_party_cost.rb

third_party_cost_report.rb

topix.rb

user.rb

variable_cost.rb

various_earning.rb

workload_report.rb

Looking at the huge list of files, could you tell what the application is about? Probably not (it’s a
project management and invoicing tool).

Let’s look at the refactored version:



Organizing large codebases with namespaces 47

app/models after refactoring

/activity

/api

/contact

/invoice

/planner

/report

/project

activity.rb

contact.rb

planner.rb

invoice.rb

project.rb

user.rb

Note how the app/models folder now gives you an overview of the core domain at one glance.
Every single file is still there, but neatly organized into a clear directory structure. If we asked a
new developer to change the way invoices work, she would probably find her way through the code
more easily.

Use the same structure everywhere

In a typical Rails application there are many places that are (most of the time) structured like the
models folder. For instance, you often see helper modules or unit tests named after your models.

When you start using namespaces, make sure that namespacing is also adopted in all the other places
that are organized by model. This way you get the benefit of better organization and discoverability
in all parts of your application.

Let’s say we have a namespaced model Project::Report. We should now namespace helpers,
controllers and views in the same fashion:

File Class

app/models/project/report.rb Project::Report

app/helpers/project/report_helper.rb Project::ReportHelper

app/controllers/projects/reports_controller.rb Projects::ReportsController

app/views/projects/reports/show.html.erb View template

Note how we put the controller into a Projects (plural) namespace. While this might feel strange
at first, it allows for natural nesting of folders in in app/views:



Organizing large codebases with namespaces 48

app/

views/

projects/

index.html.erb

show.html.erb

reports/

show.html.erb

If we put the controller into a Project (singular) namespace, Rails would expect view templates in
a structure like this:

app/

views/

project/

reports/

show.html.erb

projects/

index.html.erb

show.html.erb

Note how two folders project (singular) and projects (plural) sit right next to each other. This
doesn’t feel right. We feel that the file organization of our views is more important than keeping
controller namespace names in singular form.

Organizing test files

When we have tests we nest the test cases and support code like we nest our models. For instance,
when you use RSpec and Cucumber, your test files should be organized like this:

File Description

spec/models/project/report_spec.rb Model test
spec/controllers/projects/reports_controller_spec.rb Controller test
features/project/reports.feature Cucumber untegration test
features/step_definitions/project/report_steps.rb Step definitions

Other ways of organizing files

Of course models/controllers/tests don’t always map 1:1:1, but often they do. We think it is at the
very least a good default with little ambiguity. When you look for a file in a project structured like
this, you always know where to look first.



Organizing large codebases with namespaces 49

If another way to split up your files feels better, just go ahead and do it. Do not feel forced to be
overly consistent, but always have a good default.


