
6

7

THANKS FOR READING

� anks for reading Customer Requirements - Everything Programmers Need
To Know Before Writing Code.

If you have any suggestions, feedback (good or bad) then please do not hes-
itate to contact me directly at marco@marcobehler.com or leave a comment
on our blog at www.marcobehler.com/blog.

(� is is a one-man operation, please respect the time and e� ort that went
into this book. If you came by a free copy and � nd it useful, you can compen-
sate me at http://www.marcobehler.com/books)

� anks!

- Marco Behler, Author

Copyright 2015 Marco Behler GmbH. All Rights Reserved.

87

 Communication – Concrete: What (not) to talk about. Who. How. When. Why.

Yes, I am suspicious too. Communication is one of those super vague words that can mean
ANYTHING. Instead, let’s make it crispy!

Our guy on the cover, a Brazilian programmer called Neilson, is working for a new start-up. It is
called Zee Bänk, our � ctitious world-changing PayPal competitor, albeit very similar in features
and capabilities.

You can register an account with your email-address, have
di� erent payment methods (wire transfer, direct debit etc.)
and then use that account to pay at your favourite online
shop, for example iTunes.

As our start-up is still very young, we are missing credit cards
as a valid payment option. Hence, one morning our CEO
storms into the room and shouts:

“We need users let their credit card connect to their accounts,
immediately! Should not take too much time, I mean there
are probably libraries for that, right? Plus you guys are super
smart! And we support wire transfer already! We need to be
fast….two weeks?! Need a reliable estimate for go live in an
hour. Bye!” – Ouch!

� is chapter will give you theory and advice on what
exactly you should do now. We will start with broader topics
like “who should talk” and “meetings” and end the chapter
with very speci� c “what” and “how”.

� e next chapter will be then be a practical based on this information.

98

Who should talk now?

Before we talk about what and how, let us have a quick look at who and why this is so important.

In smaller organisations, start-ups or agencies you will � nd that developers often are hybrids:
they are not only expected to code, but also directly help the founder or sales person come up
with concepts and speci� cations. Same goes for freelancers.

In bigger organisations there is usually a dedicated role like a business analyst or product owner
who is supposed to bridge between business and tech people.

No more code monkey

� e distribution of roles or the organisation does not matter
however. Problems always arise, if honest, two-way street
communication between business/client and developers is
missing and instead is being replaced by good old top-down
communication: on one side your boss/client who comes up
with all concepts, deadlines and speci� cations. On the other
side the developers who are only supposed to implement
and not ask too many questions anymore.

Assuming you are the programmer, this means you have to
stop being an isolated code monkey and actively be involved
in shaping requirements or at least � ght for that. But more
on � ghting later.

Heterogeneity

� e key to understanding requirements and your problem
domain is heterogeneity, not homogeneity. Your primary instinct might be to talk to other
programmers, how to solve possible scaling problems or what not. But we are in the require-
ments phase, so forget all that.

You or you and your product owner should sit down with the sales guys – what exactly do they
want or did they sell already? Or with the customer support guys – do they have speci� c credit
card work� ows, like for chargebacks or stolen cards? Or the marketing guys – any special
marketing campaigns planned for credit cards, e.g. bonuses if you refer a friend?

On a bigger scale

If we are talking about bigger companies, the di� erent teams or rather their representatives
should talk to each other. Again, here I am not talking about e.g. just the programming teams
talking with each other, but about the marketing team talking with the programming team etc.
Even if it is just for a fraction of a day each month. � at is much better than working in isolated
silos.

109

Too Many Cooks Spoil the Broth

Be warned however, that inviting too many people to clarify a topic is a big mistake. Similarly to
inexperienced tug-of-war teams, the more people get together in a room to brainstorm, the less
output you get from everyone individually. It has nothing to do with shutting out team members,
but all with e� ectiveness.

Keep it simple, stupid

As a rule of thumb, always start at the low end. Only add people if needed. You will be amazed
at how many topics two or three people can actually not only conceptualise, but also implement
and ship.

In our example, let us start with just two people driving our credit card topic requirement. A
business representative, your CEO, and you, a programmer.

As credit cards are a huge topic however, it is quite likely that at some point you have to “meet”
someone, be it a technical advisor from VISA, your internal PCI compliance expert or one of your
application engineers. For those moments, you will � nd the next chapter helpful.

1110

A detour on meetings

I truly believe that you should cut down meetings as much as possible. I would not go so far and
say that 100% of meetings are bad. But out of my gut, a fair 90% are simply utterly ine� ective time
and money wasters, certainly not e� ective communication. Jason Fried and David Heinemeier
Hansson even go as far and call them toxic in their book Rework.

Instead talk to people face-to-face, individually and informally. Relentlessly prepare memos.
Make it quick. Share the knowledge afterwards.

(If you however � nd that many meetings are essential in your company, head to the Objections
section later in this chapter.)

Th e Mind-Set Going Into a Meeting

An endless amount of meetings in a software project is
usually an indicator of how bad things are, not how smooth
they are running. Do not mix up quantity with quality here.

If you are in a meeting, you want things to be short and ef-
fective. � e notable exception is customer meetings, where
you do not want to give the impression that you are running
away. Nevertheless it is always a good habit to get into the
mind-set of “which questions do I have to ask to leave this
meeting as soon as possible?”

Length of Meetings

Be wary of long meetings. It does not matter if you believe in
a 20 minute attention span or you read something about ex-
actly 47.521 minutes in your favourite psychology magazine.

Your productivity and output will drop insanely if you try to meet for hours and hours, no matter
how much everyone at the table is trying to tough it out and let nobody notice. I also recognise
that there is a special type of senior architect or management person who like having
Fidel Castro style meetings, but they are ine� ective nevertheless.

If your sessions are running longer than 60 minutes, start having mini-breaks. Open the win-
dows, stretch your legs. Let your mind wander for a couple of minutes and do not check your
mobile phones immediately for new e-mail.

Stand-Ups and Other Short Meetings

Take this paragraph with a grain of salt.

Do not let a stand-up become a lean-on-the-nearest-wall or sit-on-a-table. It is the � rst sign that
people already need to sit down to endure what is coming up. Stand-Ups also easily give you
the impression of communicating, but more often than not it is a couple of people daydreaming
while one person talks as much as he can as to look productive.

1211

Th is Is How You Should Meet

If there is no way around meetings, do it the Amazon way and get in the habit of writing detailed
memos. What exactly does that mean?

One person, the meeting holder, prepares a detailed memo on the subject before the meeting.
� at person clears out most issues in person-to-person talks before everyone else sits together in
a room.

People who are not attending the meeting but are still somewhat a� ected have to read this memo
as homework, to know what is going on.

People who attend the meeting have to read that memo before the meeting or alternatively you
can start the meeting with everyone studying the memo for 10-15 minutes. Reading, not talking.

� e goal is to get everyone up to speed as soon as possible, level out knowledge di� erences and
use the talking time to reach conclusions or decisions quickly and then leave that room again as
soon as possible. Try it out. � e practice section will contain an example of a memo and how to
spread knowledge after a meeting.

1312

Pushing Back – Handling Your Boss Or Client

� e CEO’s statement at the beginning of the chapter was a bit of a hyperbole, but pretty much
captures every warning � ag when you need to immediately push back on a requirement and
push for more clari� cation. Let us have a look at each one in turn.

Th e Appeal To Existing Solutions–“I mean there are
probably libraries for that, right?”

� is one is actually a double-edged sword. On one hand,
an astounding number of developers tends to reinvent the
wheel and shy away from o� the shelf solutions. Registering
and logging in a new user? Let’s write a new user manage-
ment! In a way, this almost seems obvious, looking at the
word “developer”.

On the other hand it gets equally counter-productive, when
business suddenly decides that they somehow know that
there are already existing libraries – or that you already im-
plemented something almost completely similar. As some-
thing is already existing, integration cannot be that hard.

To come back to our example, credit card integration IS
hard, no matter how many libraries exist. It also does not
matter how many e.g. debit-card payment methods you al-
ready implemented, the overlap in functionality and re-use
can only be seen after proper requirements work, not before.

What you have to say: “I can only tell after careful analysis, if and how useful those existing librar-
ies/solutions are”.

Th e Appeal To Your Ego – “Plus, you guys are super smart!”

� is one is tricky and I fell prey to it myself once or twice at the beginning of my career (maybe I
still do?).

It is especially dangerous when you are a freelancer/agency and your client tries to pull this on
you. Your client simply wants to save money by appealing to your ego and your skill to literally
bake that pizza in 30 seconds instead of the usual 10-12 minutes. Should you agree on that esti-
mate and then nevertheless need the usual 10 minutes, I can almost promise you that your ego
will not go crawling back to the client and go “sorry, I was not so smart after all, it took me 10x
longer”.

What you have to say: “� e complexity of this requirement unfortunately has nothing to do with
super smartness. Sure, I can promise you that fresh, Italian pizza after one minute. But you proba-
bly would like it in the oven a bit longer, wouldn’t you?”

-- END OF PREVIEW --

