
6

7

THANKS FOR READING

� anks for reading Customer Requirements - Everything Programmers Need
To Know Before Writing Code.

If you have any suggestions, feedback (good or bad) then please do not hes-
itate to contact me directly at marco@marcobehler.com or leave a comment
on our blog at www.marcobehler.com/blog.

(� is is a one-man operation, please respect the time and e� ort that went
into this book. If you came by a free copy and � nd it useful, you can compen-
sate me at http://www.marcobehler.com/books)

� anks!

- Marco Behler, Author

Copyright 2015 Marco Behler GmbH. All Rights Reserved.

852

 Practice Time: Estimation & Billing – From gut
feelings to a time tracking database

Back to our start-up Zee Bänk. In the Communication chapter we came up with 5 tasks for our
synchronous VISA payment work� ow:

1) Generate Request/Response DTOs. Estimate = ?

2) Implementation: Actual POST. Estimate = ?

3) Implementation: Success Case. Estimate = ?

4) Implementation: Error Cases. Estimate = ?

5) Documentation. Estimate = ?

Our goal is to have an hour estimate for each one of those tasks.

953

Estimation Techniques

Before looking at each one individually, I like to quickly go through all the tasks and decide on
what my strategy for each task is going to be like:

Gut Feeling + Deviation Factor

Generating Request/Response DTOs I have done plenty of
times before, so I trust my guest estimate and my own devi-
ation factor of 1.5. I assume I start with a blank time tracking
database for now, so I cannot really look up old, similar
tasks. But for sure I can write my new estimates down.

� e Success and Error cases I have already reasoned about a
lot and as I assume that there are no real technical challeng-
es, I will also go with my gut feeling + estimation factor.

What I should note here is that my gut feeling always also
includes time for testing and a tiny bit of cleaning up, not
just writing the code itself.

Spiking

� e Actual POST is something I am not quite sure of. Sure, it
seems simple enough and the documentation seems to be up-to-date. But I want to get a quick
feel it is really as simple as it looks, if the parameters are right, if authentication is easy. My spike
is going to consist of a couple of simple CURL calls. Nothing too fancy and maybe using up 30
minutes.

Fixed Time-Limits

� e documentation I am not going to estimate, instead I am going to set a � xed time-limit of 1
hour. � e one hour is simply a measure from experience. Maybe I can copy & paste parts of
existing documentation for documenting this new feature, maybe I have proper writing tools in
place, maybe I do not. Your number might di� er.

Writing documentation is in some ways a lot like brushing your teeth: Skipping to brush your
teeth for the whole month and then on one day brushing 31 times is not really going to work.
Same for documentation. Do it in small batches and do it regularly.

1054

� e Nitty-Gritty

I recommend you to quickly go back to the Line-Of-� inking sections from the Communication
Practice chapter and read through them again, as there is a certain overlap.

Generate Request/Response DTOs (maybe automatically from XSD)

For the non-Java users out there: Tools exist to easily create .class (e.g. XJC) � les from XSDs and
in our case VISA provides all XSD location URLs in our mock documentation � le. So our spike
consists of invoking a couple of command line calls, maybe cleaning up the result, adding it to
our VCS etc. Time for the gut feeling:

My Final Estimate: 30 minutes x 1.5 (deviation factor) = 45minutes.

Implementation: Actual POST

Let us assume that after curling the VISA test servers I have a pretty high con� dence level that
everything is in place, as expected. So we are talking about getting our favourite HTTP client like
Apache HttpClient up and running and implementing a POST. Marshalling/Un-Marshalling
request/response objects can be a bit of a pain to setup at � rst, but let us assume it is easy in this
case. Other than that, POSTs are straightforward and there is plenty of documentation available
how to do a straight post.

For Socket/Read Timeouts I decide to go the easy way: If the request to VISA takes longer than 3s,
I timeout and return an error code. (� is is rather simpli� ed to how it works in the real world, but
will do just � ne for now). I also am going to have a couple of tests for the timeouts etc.

Time for the gut feeling:

My Final Estimate: 1.5h x 1.5 (deviation factor) = 2,25h.

Implementation: Success Case

For the success case we assumed the redirection logic and merchant noti� cation system etc. to
be already in place. So the success case basically consists of a couple of lines of implementation
hooking into an already existing codebase and a few tests for that.

My Final Estimate: 1h x 1.5 (deviation factor) = 1.5h.

1155

Implementation: Error Cases

Error cases are always trickier than the success cases. Remember, we identi� ed 3 error cases:
WRONG CVC, BLOCKED, EXPIRED. We have di� erent acceptance criteria for each error state:
Sometimes we prompt the user to try his purchase one more time, another time we show the
user a simple “contact-customer-support” error message. We assume the redirection and general
error message logic (i.e. display an error message on a respectively styled CSS page) to be already
in place.

We have to read in some property � les for those error messages, react upon the error code VISA
returns us and then either retry the purchase or display a � nal error message. And tests.

My Final Estimate: (3x2,5h) x 1.5h(deviation factor) = 11,25h

Documentation:

My Final Estimate: 1hr (� xed)

Th e Result

Adding up all these numbers leads to 16,75h or roughly 2-3 days for the synchronous VISA pay-
ment task. � at number might di� er for you depending on how experienced you are. It does not
matter. We are going to note down the estimates, later on look at the actual implementation time
and then adjust accordingly in the future.

What we can see by looking at the screenshot below, is that the error task is assumed to be a lot
more time-consuming than the other ones. I still advise against splitting it up into more sub-
tasks though. It is faster to let one programmer implement the whole thing than trying to
parallelise it with multiple programmers and more sub-tasks. � e communication overhead is
simply too big for that.

1256

13

-- END OF PREVIEW --

57

Recommendations

Now that we have estimated our tasks, let us look at how we can get our estimates more reliable
over the long-term.

A simple time tracking database

If you live in poor man’s land and doubt the whole time-tracking thing, you can start o� with just
this. Use Excel or Notepad or something similar. Do not even write down the task descriptions,
but whenever you tackle a new task or user story write down a quick hourly estimate in a new
line.

Use a time tracker if possible, otherwise, if you are really lazy, just note down how long your task
took to implement from your head. Look at the deviation. Do that for every task you implement
for a month. Note down your deviation factor.

Here is what this looks like in Notepad:

According to that � le my estimates are o� by 1.4 the real e� ort and I am going to use this number
for my next estimates and update it again after a couple of weeks. Yes, this is not a perfect num-
ber and I do not want to get into a discussion on averages, means and standard deviations here.
For practical purposes, this will be more than enough.

