
6

7

THANKS FOR READING

� anks for reading Customer Requirements - Everything Programmers Need
To Know Before Writing Code.

If you have any suggestions, feedback (good or bad) then please do not hes-
itate to contact me directly at marco@marcobehler.com or leave a comment
on our blog at www.marcobehler.com/blog.

(� is is a one-man operation, please respect the time and e� ort that went
into this book. If you came by a free copy and � nd it useful, you can compen-
sate me at http://www.marcobehler.com/books)

� anks!

- Marco Behler, Author

Copyright 2015 Marco Behler GmbH. All Rights Reserved.

83

 � e Problem – Let’s get ready to rumble: Customer vs Programmer!

Are you ready for some bad news? You might even call it blasphemy? Here we go: Your custom-
ers do not care about your code, frameworks or software architecture. At all.

� ey only care about a solution to a speci� c problem they are having. It is all about meeting their
requirements.

Why is that such a problem?

As a software developer you primarily think of code, not so
much requirements. Coding is, after all, what you learned
and what you like to do. Often, when a software project is not
running as expected the � rst look is towards tools, frame-
works or processes. � is is the stage where it is easy to get
sucked into framework wars or debating endlessly about
tenderly crafted software architecture.

Not even does your customer not care about any of that, the
choice of tools or frameworks for most projects is complete-
ly insigni� cant - provided you have programmers knowing
how to use them properly. Java and Spring/.NET and ASP/
Ruby and Rails/PHP, for most projects it simply does not
matter.

What is important instead?

Projects do not fail because too many developers copy-and-pasted too much code from Stack-
over� ow or because they used SQL-Server instead of PostgreSQL.

� ey fail because of bad requirements: Too vague, too bloated. Hidden and then popping up in
the last minute. Endless change. Completely unrealistic deadlines for those requirements. Bud-
get and hence pro� t miscalculations. Hard to test requirements. Nonsense requirements. � e list
goes on.

Simply put: If you do not work your customer requirements properly, no amount of code or tech-
nology can � x your project.

Are you too smart?

� e irony is: you might well be too smart to really care for the customer’s requirements. Your
education, your peers and your job title constantly steer you into the direction that code, frame-
works and algorithms are the primary things that count.

� e customer might after all just want to upload an Excel � le to a shared hard drive and get some
data processing done. How boring and unsexy is that? You on the other hand almost deserve
a challenge for all the hard work you put into your education: “How can we use NodeJS for this
problem?”

94

Put your ego aside

Do not forget: At the end of the day, someone trades in money in exchange for getting a solution
to one of his business problems, which might be your clever code solution, but often is not. It is
not about you. It is all about the customer.

It does not matter if you work in a small shop and interact with your customers on a daily basis.
Or if you are in an organisation so big, that you direct boss is the only one remotely resembling a
customer.

� ink like a chef. Without a solid recipe (requirements), good ingredients and proper prepara-
tion, no outstanding meal, no happy customers – completely independent from your technical
cooking skills.

Requirements are our recipe

Let us not be picky for the moment: Requirements or needs or wants or speci� cation - names do
not matter. When I say requirements, I mean “what exactly are we supposed to build and how
does that ultimately lead to $$$ for the company”.

Properly de� ned requirements not only let you � gure out what you should build (obvious, huh?),
when you are done and if you made the customer happy or not. � ey play a major part in every
phase of software development.

Estimation: Do you want to continue to guesstimate your requirements or get a proper feel for
how long certain tasks take?

If you are a freelancer, agency or in general directly paid for writing code, do you want to learn
how to bill properly? Instead of getting underpaid? How do you know what you should get paid?

Do you want to learn how to handle customers correctly and not always feel one-down? You bet-
ter know those requirements and the problem domain better than your customer.

Planning, building and testing software: So many books are written on low-level details on how
to build or test stu� . But how are we supposed to get the how right, if we are still struggling with
the ever changing what?

105

Last but not least: What does that look like in practice? How do you write up and manage re-
quirements in the long term? How do you deal with team members and di� erent domain knowl-
edge levels?

Our way to the perfect meal

But programmers can almost be blind to the importance of properly clari� ed requirements. We
want to � re up our IDE. Code, code, code. Try out our latest fancy agile methodology. Meet that
next deadline. “When? Tomorrow!”

Here is what we should do, instead. Before we think about any code at all, we should start with
just one question:

“What is it that the customer actually wants to accomplish?”

Sounds too easy?

Unfortunately, the way to get to that “what” is not so easy.
Some villains are trying to get us o� that path. Let us meet
them:

Mr. Vagueness: “We need a new dunning & collection mod-
ule for our E-Commerce shop. It should be able to do *every-
thing*.”

Mr. Constant Change: “Oh, well, we don’t have that many
dunning cases anyway, erm, let’s focus on friendly reminder
emails � rst, right?”

Mr. Hidden: “Oh, I completely forgot, our VP also wants to
see some reporting on those overdue customers. But now
that the rest is already implemented it wil just be a minor
e� ort, right?”

Mr. Perfect: “We have to get it perfect, the � rst time around!
Plus, we have to be � rst to market! Deadline is in x weeks.
Beat our competitors! Be the best!”

Fear not

What a bunch of unhappy campers. But here is the trick: We are not going to be able to slay them
all, ever. � at would be wishful thinking.

What we have to learn instead, is to feel comfortable around them. Not only comfortable, but we
have to learn how to control them, push back on them and make their impact as little as possible.

But Beware

It is easy to fall into the trap of ignoring all this and start thinking code. Someone else has the job
to work out those requirements, right? Some business analyst or product owner! Isn’t the cus-
tomer supposed to know what he wants? I want to setup my MongoDB instead!

If you go down that line of thinking, you will forever start � rst, � nish last. It is time to stop think-

116

ing like an isolated code monkey and being fed bananas, erm…, requirements day-in-day out.

If you really want to make your boss, your customer and yourself happy in addition to impressing
everyone with your coding skills, then you have to look at requirements as a two way street. You
have to work them properly. � at is what you will learn in this book.

What exactly you will learn

You will learn what exactly a proper requirement looks like. You will learn how to ask the right
questions to clarify vague requirements and make them real crispy.

You will learn how to control our villains (Mr. Vagueness and his friends). Pushing back on
vagueness and nonsense. Dealing with change.

You will learn how to stop guesstimating and start estimating. You will see what billing and cus-
tomer handling has to do with proper requirements and how to become really e� ective at both.

You will learn when a requirement is “safe” to be implemented and tested, without rushing
headless to your IDE and banging out code.

Best of all, this will not just be a lot of dry blah-blah. Sure, as always there is some mild theory to
be learned, but every chapter comes with a full on practical, taking you step-by-step from vague-
ness to clarity.

Buckle up, we are in for a ride! Let’s go!

