

Copyright
Copyright © 2020, 353solutions LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Rectified
relu.py

 1 import pandas as pd
 2
 3
 4 def relu(n):
 5 if n < 0:
 6 return 0
 7 return n
 8
 9
10 arr = pd.Series([-1, 0, 1])
11 print(relu(arr))

 Try to guess what the output is before moving to the next page.

This code will raise a ValueError.

The problematic line is if n < 0:, n is the result of arr < 0 which is a pandas.Series.

In [1]: import pandas as pd
In [2]: arr = pd.Series([-1, 0, 1])
In [3]: arr < 0
Out[3]:
0 True
1 False
2 False
dtype: bool

Once arr < 0 is computed, we use it in an if statement. Which brings us to how boolean values
work in Python.

Every Python object, not only True and False has a boolean value. The documentation state the
rules:

Everything is True except:

• 0 numbers: 0, 0.0, 0+0j …

• Empty collections: [], {}, '', …

• None

• False

You can test the truth value of a Python object using the built-in bool function.

On top of the above, any object can state its own boolean value using the __bool__ special method.
The boolean logic for pandas.Series is different than the one for a list or a tuple - it raises an
exception.

In [4]: bool(arr < 0)
...
ValueError: The truth value of a Series is ambiguous.
Use a.empty, a.bool(), a.item(), a.any() or a.all().

The exception tells you the reasoning - it follows The Zen of Python which states:

In the face of ambiguity, refuse the temptation to guess.

So, what are your options? You can use all or any but then you’ll need to check the type of n to see if
it’s a plain number of a pandas.Series.

A function that works both on scalar and a pandas.Series (or a numpy array) is called a "ufunc",

https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/functions.html#bool
https://www.python.org/dev/peps/pep-0020/#the-zen-of-python

short for "universal function". Most of the function from numpy or Pandas, such as min,
to_datetime…, are ufuncs.

numpy has a vectorize decorator for these cases.

relu_vec.py

 1 import numpy as np
 2 import pandas as pd
 3
 4
 5 @np.vectorize
 6 def relu(n):
 7 if n < 0:
 8 return 0
 9 return n
10
11
12 arr = pd.Series([-1, 0, 1])
13 print(relu(arr))

Now relu will work both on scalars (e.g. 7, 2.18 …) and vectors (e.g. numpy array, pandas.Series …)


The output of relu now is numpy.ndarray, not pandas.Series. You might want to have
a look at numba.vectorize as well.

Further Reading
• Truth value testing in the Python documentation

• PEP 285 - Adding a bool type

• __bool__ documentation

• Universal functions on the numpy docs

https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize
https://numba.pydata.org/numba-doc/latest/user/vectorize.html
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://www.python.org/dev/peps/pep-0285/
https://docs.python.org/3/reference/datamodel.html#object.__bool__
https://numpy.org/doc/stable/reference/ufuncs.html?highlight=ufunc

	Pandas Brain Teasers
	Copyright
	Rectified

