

Copyright
Copyright © 2020, 353solutions LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Rectified
relu.py

 1 import pandas as pd
 2
 3
 4 def relu(n):
 5 if n < 0:
 6 return 0
 7 return n
 8
 9
10 arr = pd.Series([-1, 0, 1])
11 print(relu(arr))

 Try to guess what the output is before moving to the next page.

This code will raise a ValueError.

The problematic line is if n < 0:, n is the result of arr < 0 which is a pandas.Series.

In [1]: import pandas as pd
In [2]: arr = pd.Series([-1, 0, 1])
In [3]: arr < 0
Out[3]:
0 True
1 False
2 False
dtype: bool

Once arr < 0 is computed, we use it in an if statement. Which brings us to how boolean values
work in Python.

Every Python object, not only True and False has a boolean value. The documentation state the
rules:

Everything is True except:

• 0 numbers: 0, 0.0, 0+0j …

• Empty collections: [], {}, '', …

• None

• False

You can test the truth value of a Python object using the built-in bool function.

On top of the above, any object can state its own boolean value using the __bool__ special method.
The boolean logic for pandas.Series is different than the one for a list or a tuple - it raises an
exception.

In [4]: bool(arr < 0)
...
ValueError: The truth value of a Series is ambiguous.
Use a.empty, a.bool(), a.item(), a.any() or a.all().

The exception tells you the reasoning - it follows The Zen of Python which states:

In the face of ambiguity, refuse the temptation to guess.

So, what are your options? You can use all or any but then you’ll need to check the type of n to see if
it’s a plain number of a pandas.Series.

A function that works both on scalar and a pandas.Series (or a numpy array) is called a "ufunc",

https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/functions.html#bool
https://www.python.org/dev/peps/pep-0020/#the-zen-of-python

short for "universal function". Most of the function from numpy or Pandas, such as min,
to_datetime…, are ufuncs.

numpy has a vectorize decorator for these cases.

relu_vec.py

 1 import numpy as np
 2 import pandas as pd
 3
 4
 5 @np.vectorize
 6 def relu(n):
 7 if n < 0:
 8 return 0
 9 return n
10
11
12 arr = pd.Series([-1, 0, 1])
13 print(relu(arr))

Now relu will work both on scalars (e.g. 7, 2.18 …) and vectors (e.g. numpy array, pandas.Series …)

The output of relu now is numpy.ndarray, not pandas.Series. You might want to have
a look at numba.vectorize as well.

Further Reading
• Truth value testing in the Python documentation

• PEP 285 - Adding a bool type

• __bool__ documentation

• Universal functions on the numpy docs

https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize
https://numba.pydata.org/numba-doc/latest/user/vectorize.html
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://www.python.org/dev/peps/pep-0285/
https://docs.python.org/3/reference/datamodel.html#object.__bool__
https://numpy.org/doc/stable/reference/ufuncs.html?highlight=ufunc

	Pandas Brain Teasers
	Copyright
	Rectified

