

Copyright
Copyright © 2020, 353solutions LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Late Addition
archer.py

1 import pandas as pd
2
3 df = pd.DataFrame([
4 ['Sterling', 83.4],
5 ['Cheryl', 97.2],
6 ['Lana', 13.2],
7], columns=['name', 'sum'])
8 df.late_fee = 3.5
9 print(df)

 Try to guess what the output is before moving to the next page.

This code will print:

 name sum
0 Sterling 83.4
1 Cheryl 97.2
2 Lana 13.2

Where did the late_fee column go?

Python’s objects are very dynamic, you can add attributes to most of them as you please.

In [1]: class Point:
 ...: def __init__(self, x, y):
 ...: self.x, self.y = x, y
In [2]: p = Point(1, 2)
In [3]: p.x, p.y
Out[3]: (1, 2)
In [4]: p.z = 3
In [5]: p.z
Out[5]: 3

Pandas lets you access columns both by square brackets access (e.g. df[name]) and by attribute
access (e.g. df.name). I recommend using square brackets at all times. One reason is what we saw -
when you add an attribute to a DataFrame, it does not register as a new column. The second is that
column names in CSV, JSON and other formats can container spaces or other characters that are not
valid Python identifiers - meaning you won’t be able to access them with attribute access -
df.product id will fail while df['product id'] will work.

And the last reason is that it’s confusing:

In [6]: df.sum
Out[6]:
<bound method DataFrame.sum of name sum
0 Sterling 83.4
1 Cheryl 97.2
2 Lana 13.2>

You get the DataFrame sum method and not the sum column. Also

In [7]: df.late_fee
Out[7]: 3.5

You probably expected late_fee to be a Series like the other columns.

Sometimes you’d like to add metadata to a DataFrame, say the name of the file the data was read
from.

Instead of adding a new attribute, e.g. df.originating_file = '/path/to/sales.db', there’s an
experimental attribute called attrs for storing metadata in a DataFrame.

In [8]: df.attrs['originating_file'] = '/path/to/sales.db'
In [9]: df.attrs
Out[9]: {'originating_file': '/path/to/sales.db'}

Further Reading
• Indexing Basics on the Pandas documentation

• Identifiers and keywords in the Python documentation

• DataFrame.attrs documentation

https://pandas.pydata.org/docs/user_guide/indexing.html#basics
https://docs.python.org/3/reference/lexical_analysis.html#identifiers
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs

	Pandas Brain Teasers
	Copyright
	Late Addition

