

Copyright
Copyright © 2020, 353solutions LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

An Inside Job
inside.py

1 def add_n(items, n):
2 items += range(n)
3
4
5 items = [1]
6 add_n(items, 3)
7 print(items)

 Try to guess what the output is before moving to the next page.

This code will print: [1, 0, 1, 2]

In [Call Me Maybe] we talked about rebinding vs mutation. And most of the times items += range(n)
is translated to items = items + range(n) which is rebinding.

There is a special optimization for += in some cases. Here’s what the documentation says (my
emphasis):

An augmented assignment expression like x += 1 can be rewritten as x = x +
1 to achieve a similar, but not exactly equal effect. In the augmented
version, x is only evaluated once. Also, when possible, the actual
operation is performed in-place, meaning that rather than creating a
new object and assigning that to the target, the old object is modified
instead.

A type defines how the + operator behaves with the __add__ special method and can define __iadd__
as a special case for +=. The documentation says:

These methods are called to implement the augmented arithmetic
assignments (+=, -=, =, @=, /=, //=, %=, *=, <⇐, >>=, &=, ^=, |=). These
methods should attempt to do the operation in-place (modifying self) and
return the result (which could be, but does not have to be, self). If a specific
method is not defined, the augmented assignment falls back to the normal
methods.

The built-in list object defines __iadd__ which calls the extend method.

What will happen if you change the code inside add_n to items = items + range(n)? You will get an
exception: TypeError: can only concatenate list (not "range") to list.

In Python 3, range returns a range object.[1] Even though it looks like a list (len, [] and friends will
work) you can’t add it to a list.

If you want the rebinding code to work, you’ll need to write items = items + list(range(n)) and
then the output will be [1].

As a general rule, try not to mutate the object passed to your functions. This style of programming is
called functional programming. Functional code is easier to test and reason about, give it a try - it’s
fun.

Further Reading
• Functional programming on Wikipedia

• Built-in range documentation

• Augmented assignment statements in the Python reference

https://docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements
https://docs.python.org/3/reference/datamodel.html#object.__iadd__
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/functions.html#func-range
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements

• Functional Programming HOWTO in the Python documentation

[1] In Python 2 it returns a list.

https://docs.python.org/3/howto/functional.html

	Python Brain Teasers
	Copyright
	An Inside Job

