
Extracted from:

Python Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from Python Brain Teasers, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Brain Teasers
Exercise Your Mind

Miki Tebeka

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: Jennifer Whipple
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-900-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Puzzle 27

An Inside Job

inside.py
def add_n(items, n):

items += range(n)

items = [1]
add_n(items, 3)
print(items)

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/d-pybrain/code/inside.py
http://pragprog.com/titles/d-pybrain
http://forums.pragprog.com/forums/d-pybrain

This code will print: [1, 0, 1, 2]

In the Call Me Maybe puzzle, we talked about rebinding versus mutation. And
most of the time, items += range(n) is translated to items = items + range(n), which
is rebinding.

There is a special optimization for += in some cases. Here’s what the docu-
mentation says (my emphasis):

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to
achieve a similar, but not exactly equal, effect. In the augmented version, x is
only evaluated once. Also, when possible, the actual operation is performed in
place, meaning that rather than creating a new object and assigning that to the
target, the old object is modified instead.

A type defines how the + operator behaves with the __add__ special method
and can define __iadd__ as a special case for +=. The documentation says

These methods are called to implement the augmented arithmetic assignments
(+=, -=, =, @=, /=, //=, %=, *=, <⇐, >>=, &=, ^=, |=). These methods should attempt to
do the operation in place (modifying self) and return the result (which could be,
but does not have to be, self). If a specific method is not defined, the augmented
assignment falls back to the normal methods.

The built-in list object defines __iadd__, which calls the extend method.

What will happen if you change the code inside add_n to items = items + range(n)?
You will get an exception: TypeError: can only concatenate list (not "range") to list.

In Python 3 the built-in range function returns a range object. Even though it
looks like a list (len, [], and friends will work), you can’t add it to a list.

If you want the rebinding code to work, you’ll need to write items = items +
list(range(n)) and then the output will be [1].

As a general rule, try not to mutate the object passed to your functions. This
style of programming is called functional programming. Functional code is
easier to test and reason about. Give it a try. It’s fun.

Further Reading
Functional Programming on Wikipedia

en.wikipedia.org/wiki/Functional_programming

Built-in range Documentation
docs.python.org/3/library/functions.html#func-range

Python Brain Teasers • 8

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Functional_programming
http://docs.python.org/3/library/functions.html#func-range
http://pragprog.com/titles/d-pybrain
http://forums.pragprog.com/forums/d-pybrain

“Augmented Assignment Statements” in the Python Reference
docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements

“Functional Programming HOWTO” in the Python Documentation
docs.python.org/3/howto/functional.html

__iadd__ Documentation
docs.python.org/3/reference/datamodel.html#object.__iadd__

“More on Lists” in the Python Documentation
docs.python.org/3/tutorial/datastructures.html#more-on-lists

• Click HERE to purchase this book now. discuss

An Inside Job • 9

http://docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements
http://docs.python.org/3/howto/functional.html
http://docs.python.org/3/reference/datamodel.html#object.__iadd__
http://docs.python.org/3/tutorial/datastructures.html#more-on-lists
http://pragprog.com/titles/d-pybrain
http://forums.pragprog.com/forums/d-pybrain

