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Puzzle 27

An Inside Job

inside.py
def add_n(items, n):

items += range(n)

items = [1]
add_n(items, 3)
print(items)

Guess the Output

Try to guess what the output is before moving to the next page.
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This code will print: [1, 0, 1, 2]

In the Call Me Maybe puzzle, we talked about rebinding versus mutation. And
most of the time, items += range(n) is translated to items = items + range(n), which
is rebinding.

There is a special optimization for += in some cases. Here’s what the docu-
mentation says (my emphasis):

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to
achieve a similar, but not exactly equal, effect. In the augmented version, x is
only evaluated once. Also, when possible, the actual operation is performed in
place, meaning that rather than creating a new object and assigning that to the
target, the old object is modified instead.

A type defines how the + operator behaves with the __add__ special method
and can define __iadd__ as a special case for +=. The documentation says

These methods are called to implement the augmented arithmetic assignments
(+=, -=, =, @=, /=, //=, %=, *=, <⇐, >>=, &=, ^=, |=). These methods should attempt to
do the operation in place (modifying self) and return the result (which could be,
but does not have to be, self). If a specific method is not defined, the augmented
assignment falls back to the normal methods.

The built-in list object defines __iadd__, which calls the extend method.

What will happen if you change the code inside add_n to items = items + range(n)?
You will get an exception: TypeError: can only concatenate list (not "range") to list.

In Python 3 the built-in range function returns a range object. Even though it
looks like a list (len, [], and friends will work), you can’t add it to a list.

If you want the rebinding code to work, you’ll need to write items = items +
list(range(n)) and then the output will be [1].

As a general rule, try not to mutate the object passed to your functions. This
style of programming is called functional programming. Functional code is
easier to test and reason about. Give it a try. It’s fun.

Further Reading
Functional Programming on Wikipedia

en.wikipedia.org/wiki/Functional_programming

Built-in range Documentation
docs.python.org/3/library/functions.html#func-range
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“Augmented Assignment Statements” in the Python Reference
docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements

“Functional Programming HOWTO” in the Python Documentation
docs.python.org/3/howto/functional.html

__iadd__ Documentation
docs.python.org/3/reference/datamodel.html#object.__iadd__

“More on Lists” in the Python Documentation
docs.python.org/3/tutorial/datastructures.html#more-on-lists
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