Extracted from:

Build Awesome Command-Line
Applications in Ruby

Control Your Computer, Simplify Your Life

This PDF file contains pages extracted from Build Awesome Command-Line Appli-
cations in Ruby, published by the Pragmatic Bookshelf. For more information or
to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Build Awesome
Command-Line
Applications
in Ruby

Control Your Computer,
Simplify Your Life

e

David Bryant Copeland
Edited by John Osborn

- .

The Facets ‘ of Ruby Series

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)

Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-91-3

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

Introduction

Graphical user interfaces (GUIs) are great for a lot of things; they are typically
much kinder to newcomers than the stark glow of a cold, blinking cursor.
This comes at a price: you can get only so proficient at a GUI before you have
to learn its esoteric keyboard shortcuts. Even then, you will hit the limits of
productivity and efficiency. GUIs are notoriously hard to script and automate,
and when you can, your script tends not to be very portable.

This is all beside the point; we are software developers, and we write programs.
What could be more natural than using code to get our work done? Consider
the following command sequence:

> cd ~/Projects/cli
> vi chapter2.md

While these two commands might strike you as opaque, they are a highly
efficient means of editing a file.

For most of my career, the command line meant a UNIX shell, like bash. The
bash shell provides some basic built-in commands, as well as access to many
other standard (and nonstandard) commands that are shipped with any UNIX
system. These commands are single-purpose, require no user interaction,
and come with easy-to-use (but hard-to-learn) user interfaces. These attributes
let you piece them together in a near-infinite number of ways. Automating
sophisticated behavior, performing complicated analysis, and parsing a myriad
of text files can be done easily and expediently. This was life for me early on
in my career. And it was good.

Then, in the mid-1990s, as Java grew in popularity, the idea of stringing
together UNIX command-line utilities to get things done came to be seen as
archaic. Java programs eschewed simple text-based configuration and file-
based input/output (I/O) for complex hierarchies of XML driven by RPC and
HTTP 1/0. This allowed for very sophisticated systems to be built, and GUI
tools sprang up to abstract away the complexity of building and configuring
these systems. Even the act of writing and building code got swallowed up

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

vi ® Introduction

by ever more complex integrated development environments (IDEs). The
simplicity of the command line was starting to get lost.

The problem is, there are too many tasks that don’t fit the model of these
tools; it’s just too darn easy to go out to the shell and get things done. So,
while I never bought into the concept that IDEs and sophisticated GUI tools
were an advancement of the command line, I made peace with the facts of
life and settled into a comfortable pattern: Java was for “real” code, and the
command line (along with Perl and Ruby) was for automation, one-off scripts,
and other things that helped me get repetitive things done quickly.

In the mid 2000s, I started to take notice of Ruby, Rails, and the amazing
community built up around these tools. To my surprise (and delight), almost
everything was command-line driven. Dynamic languages like Ruby don’t
lend themselves too well to IDEs (some even argue that an IDE makes no
sense for such languages), and the burgeoning developer community wasn’t
on the radar of any top-tier tool makers. The community embraced the com-
mand line and created command-line applications for everything. Although
Perl had been doing this for years, this was the first time I'd noticed such a
strong embrace of the command line in the “post-Java” world.

What was more interesting was the taste and polish put into these command-
line apps. Most featured a full-blown help system, often with command-based
navigation of features, but still stayed true to the “UNIX way” of simplicity
and interoperability. Take gem, for example. It's the command used to install
other Ruby apps and libraries into your system:

$ gem help
RubyGems is a sophisticated package manager for Ruby. This is a
basic help message containing pointers to more information.

Usage:
gem -h/--help
gem -v/--version
gem command [arguments...] [options...]

Examples:
gem install rake
gem list --local
gem build package.gemspec
gem help install

Further help:

gem help commands list all 'gem' commands
gem help examples show some examples of usage
gem help platforms show information about platforms

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

How This Book Is Organized ® vii

gem help <COMMAND> show help on COMMAND
(e.g. 'gem help install')
gem server present a web page at

http://localhost:8808/
with info about installed gems
Further information:
http://rubygems.rubyforge.org

This is just a small part of the very complete documentation available, and
it’s all there, right from the command line. It’s clear that a lot of thought was
put into making this tool polished; this was no one-off, hacky script. Much
like the design philosophy of Ruby on Rails, there was clear care given to the
user experience of the programmer. These tools aren’t one-off scripts someone
pieced together; they are made for “real” work.

What this told me was that the command line is far from the anachronism
that Java tool vendors would have us believe; it’s here to stay. The future of
development won’t just be manipulating buttons and toolbars and dragging
and dropping icons to create code; the efficiency and productivity inherent
to a command-line interface will always have a place in a good developer’s
tool chest. There are developers who demand polish and usability from their
command-line tools, and there are developers who are interested in delivering
it!

That’s what this book is about: delivering awesome command-line applications
(and how easy it is to do so in Ruby). It’s for any programmer who wants to
unlock the potential of a command-line interface but who also wants to create
a polished and robust application with a real user interface that is easy to
grasp and use.

How This Book Is Organized

In the next ten chapters, we’ll discuss every detail of command-line application
development, from user input, program output, and code organization to error
handling, testing, and distribution. We’ll learn about this by building and
enhancing two example applications. Over the course of the book, we’ll make
them better and better to learn what an awesome command-line app is. We'll
see that Ruby makes it very easy to do, thanks to its great syntax and features,
as well as several open source libraries.

The first thing we’ll learn—in Chapter 1, Have a Clear and Concise Purpose,

making an awesome application that’s easy for both users and the system to

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

viii ® Introduction

interact with. That chapter is all about the user interface of command-line
apps and introduces the two main styles of app: a simple UNIX-like style and
the more complex “command-suite” style, as exemplified by commands like
git or gem.

In Chapter 3, Be Helpful, on page ?, we’ll learn how to provide excellent help
andusagedocumentatlon,Command-hne apps are harder to discover and
learn compared to GUIs, so this is one of the most important things to get
right. We'll follow that up with Chapter 4, Play Well with Others, on page ?,

where we’ll learn how to make our apps interoperable with any other system.

At this point, we’ll know how to make a good command-line app. Chapter 5,

and learn how easy it is to add polish to our apps. We'll continue this trend
in Chapter 6, Make Configuration Easy, on page ?, where we'l learn how to

make our apps easy to use for users with many different tastes and prefer-
ences.

Chapter 7, Distribute Painlessly, on page ? will cover everything you need
to distribute your application with RubyGems so that others can use it (we’'ll
also cover installation in tightly controlled environments where RubyGems

isn’t an option).

In Chapter 8, Test, Test, Test, on page ?, we'll learn all about testing com-
mand-line apps, including some techniques to keep your tests from making
a mess of your system. With the ability to test our apps comes the ability to

refactor them so they are easier to maintain and enhance. Chapter 9, Be Easy

as well as some design patterns that are most useful to command-line apps.

We'll finish by pushing the envelope of what command-line apps should do
in Chapter 10, Add Color, Formaiting, and Interactivity, on page ?. We'l learn

all about colored, formatted output, as well as interacting with the user using
Readline.

Many open source libraries and tools help make command-line apps in Ruby.
We'll look at some of them, such as OptionParser, GLI, and Cucumber, in great
detail. But you don’t have to limit yourself to just these tools. Appendix 1,

the other popular libraries so you can use the best tool for you.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

Who This Book Is For ® ix

Who This Book Is For

This book is aimed at both developers and system administrators who have
some familiarity with Ruby and who find themselves automating things on
the command line (or who wish they could).

¢ If you're a developer who finds yourself faced with automation tasks but
aren’t familiar with the various conventions and techniques around the
command line, this book will help you. A problem you might have is the
maintenance of a “quick hack” script you wrote that has lived long past
its prime. This book will give you the tools and techniques to make your
next script longer-lived, polished, and bulletproof...all without spending
a lot of time on it.

e Ifyou're a sysadmin, you might find shell scripting limiting or frustrating.
If you're pushing bash to the limit in your automation tasks, this book will
open up a whole new world for you. Writing command-line apps in Ruby
is also a great way to really learn Ruby and become a better programmer,
since you can apply it directly to your day-to-day tasks.

What You'll Need

The only thing you’ll need to follow along is a Ruby installation and a UNIX-
like shell. Ruby 1.9.2 or greater is recommended; however, the examples
should work fine with 1.8.7 (we’ll let you know if there’s an important differ-
ence you need to be aware of). If you download the code from the book’s
website," you'll notice at the top of the archive is a Gemfile. This should contain
a list of all the gems you need to run the example apps, and you can use this
file, along with Bundler,” to install everything in one step. If you don’t know
what any of that means, don’t worry; the book will tell you when to install
any needed gems. If things aren’t working right, you can use the Gemfile to see
which versions of gems I used when writing the book.

For writing command-line apps and following along with the examples, Mac
and Linux users just need a text editor and a terminal or shell application
(I'm assuming you’ll have Ruby installed already; most Linux distributions
include it). I highly recommend that you use RVM® and create a gemset for
the examples in this book. RVM allows you to install any version of Ruby

1. http:/pragprog.com/book/dccar/build-awesome-command-line-applications-in-ruby

2. http:/gembundler.com

3. http:/beginrescueend.com

« Click HERE to purchase this book now. discuss

http://pragprog.com/book/dccar/build-awesome-command-line-applications-in-ruby
http://gembundler.com
http://beginrescueend.com
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

x ® Introduction

alongside your system version and to isolate gems from one another, which
is very handy when learning new technologies.

For Windows users, the examples and code should work from the command
prompt; however, you might have a better experience installing Cygwin® or
MSYS® and using one of those for your shell. If you haven't installed Ruby,
the easiest way to do that is to use the Ruby Installer.® For the most part,
everything in this book is compatible with Windows, with the exception of the
following:

e For apps with the suffix .rb, you will need to associate the file extension
with Ruby. You should be able to do this when running the Ruby Installer.
For apps that have no suffix, assuming you've set up the association to
the .rb extension, you will need to run the app via the ruby command, like
so:

c:\> ruby my_app.rb
To simplify things, you could create a .bat file to wrap this up:

@echo off
ruby my app.rb %*

The %* ensures that all the command-line parameters you give to your
.bat will get passed along to your app.

e Aruba, the tool we’ll be using to run acceptance tests of our command-
line apps, is not well supported on Windows at the time of this writing.
We'll cover this in more detail when we get to the chapter on testing, which
is Chapter 8, Test, Test, Test, on page ?.

Other than that, if there’s something a Windows user will need to do a bit
differently, we’ll point it out, but generally speaking, things work well on both
UNIX-like platforms and Windows.

Conventions Used in the Book

There are three important things to know about the layout and conventions
used in this book: the level of background knowledge you’ll need on Ruby,
UNIX, and OO; the way we’ll work with code; and where testing fits into all
this.

4. http:/www.cygwin.com/

5. http:/www.mingw.org/wiki/MSYS

6. http:/rubyinstaller.org/

« Click HERE to purchase this book now. discuss

http://www.cygwin.com/
http://www.mingw.org/wiki/MSYS
http://rubyinstaller.org/
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

>

Conventions Used in the Book ® xi

Ruby, UNIX, and Object Orientation

Since this is a book about writing command-line apps in Ruby, you're going
to need to know a bit about the Ruby language and the UNIX environment.
We've kept the code examples as clear as we can so that even with a passing
familiarity with Ruby and UNIX, you’ll be able to follow along.

Later in the book, we’ll start to use more of the object-oriented features of
Ruby, so knowing what classes and objects are will be helpful. Again, we've
kept it as simple as we could so you can focus on the tools and techniques
without getting distracted by some of Ruby’s more esoteric features.

If you're very new to Ruby or just want to brush up, please consider the Ruby
Koans’ and the “Pickaxe Book” (Programming Ruby: The Pragmatic Program-
mer’s Guide [TFH09]).

Code

It’s also worth pointing out that this book is about code. There is a lot of code,
and we’ll do our best to take each new bit of it step by step. Much of the code
in this book will be from two example applications that we’ll enhance and
improve over time. To point out new things that we're changing, we’ll use a
subtle but important callout. Consider some Ruby code like so:

if !filename.nil?
File.open(filename) do |file|
file.readlines do |line]|
puts line.upcase
end
end
end

We might want to change that if to an unless to avoid the negative test.

unless filename.nil?
File.open(filename) do |file|
file.readlines do |line]|
puts line.upcase
end
end
end

Do you see the arrow next to the new unless statement? Look for those every
time there’s new code. Occasionally, we’ll introduce a larger change to the
code we're working on. In those cases, we’ll call out particular lines for refer-
ence, like so:

7. http:/rubykoans.com/

« Click HERE to purchase this book now. discuss

http://rubykoans.com/
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

®

xii ® Introduction

) def upper case file(filename)

unless filename.nil?
File.open(filename) do |file]
file.readlines do |line|
puts line.upcase
end
end
end
end

We can then discuss particular lines using a numbered list:
® Here we define a new method named upper case file.
® We check for nil here, so we don’t get an exception from File.open.

® Finally, we uppercase the line we read from the file before printing it with
puts.

Testing

The Ruby community loves testing; test-driven development is at the heart
of many great Ruby applications, and the community has a wide variety of
tools to make testing very easy. We'll even be looking at some in Chapter 8,

then. While you should absolutely test everything you do, it can be somewhat
distracting to explain a concept or best practice in the context of a unit test,
especially with some of the unique features and challenges of a command-
line application.

So, don’t take the lack of testing as an endorsement of cowboy coding.®. We're
omitting the tests so you can take in the important parts of making an awe-
some command-line application. Once youre comfortable with these best
practices, the information we’ll discuss about testing will leave you with all
the skills you need to test-drive your next command-line app.

Online Resources

At the website for this book,’ you’ll find the following:

e The full source code for all the sample programs used in this book.

e An errata page, listing any mistakes in the current edition (let’s hope that
will be empty!).

« Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Cowboy_coding
http://pragprog.com/titles/dccar
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

Acknowledgments ® xiii

¢ A discussion forum where you can communicate directly with the author
and other Ruby developers. You are free to use the source code in your
own applications as you see fit.

Note: If you're reading the ebook, you can also click the little gray rectangle
before the code listings to download that source file directly.

Acknowledgments

This book started as part of the Pragmatic Programmers’ “PragProWriMo,”
which isn’t much more than some budding authors posting their daily writing
stats to a forum'® every day during the month of November. This book is very
different from the 170 pages I produced in November 2010, but I wrote almost
every day, proving that I could actually produce a book’s worth of material
and that writing command-line applications in Ruby was a large enough
topic to fill a book!

I had no particular plans to do anything with the manuscript I wrote, but
when Travis Swicegood, author of Pragmatic Version Control with Git [Swi08],
posted in the forum that his PragProWriMo manuscript had been accepted
for development, I thought I'd submit mine as well. So, while Travis wasn’t
the inspiration for the material in this book, he certainly was the inspiration
for turning this material into a book.

There are a lot of people to thank, but I have to start with my wife, Amy, who
has been amazingly supportive and encouraging. She even let me install Ruby,
vim, and Cygwin on her Windows laptop for testing.

I'd like to thank my editor, John Osborn, for his patience and advice as well
as for inadvertently giving me a crash course in technical writing.

Next, I'd like to thank all the technical reviewers who gave me invaluable
feedback on my manuscript at various stages of its development. They include
Paul Barry, Daniel Bretoi, Trevor Burnham, Ian Dees, Avdi Grimm, Wynn
Netherland, Staffan Noteberg, Noel Rappin, Eric Sendlebach, Christopher
Sexton, and Matt Wynne.

Finally, I'd like to thank the many programmers who've contributed to the
open source projects I mention in the book, including, but probably not lim-
ited to, the following: Aslak Hellesgy, TJ Holowaychuk, Ara Howard, Yehuda
Katz, James Mead, William Morgan, Ryan Tomayko, Chris Wanstrath, and,

10. http:/forums.pragprog.com/forums/190

« Click HERE to purchase this book now. discuss

http://forums.pragprog.com/forums/190
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

xiv ® Introduction

of course Yukihiro “Matz” Matsumoto, who created such a wonderful language
in which to write command-line apps.

With all that being said, let’s get down to business and start making our
command-line apps a lot more awesome!

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

