
Extracted from:

Build Awesome Command-Line
Applications in Ruby

Control Your Computer, Simplify Your Life

This PDF file contains pages extracted from Build Awesome Command-Line Appli-
cations in Ruby, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-91-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

4.2 Using the Standard Output and Error Streams Appropriately

In addition to the ability to return a single value to the calling program, all
programs have the ability to provide output. The puts method is the primary
way of creating output that we’ve seen thus far. We’ve used it to send messages
to the terminal. A command line’s output mechanism is actually more
sophisticated than this; it’s possible to send output to either of two standard
output streams.

By convention, the default stream is called the standard output and is
intended to receive whatever normal output comes out of your program. This
is where puts sends its argument and where, for example, mysqldump sends the
SQL statements that make up the database backup.1

The second output stream is called the standard error stream and is intended
for error messages. The reason there are two different streams is so that the
calling program can easily differentiate normal output from error messages.
Consider how we use mysqldump in db_backup.rb:

play_well/db_backup/bin/db_backup.rb
command = "mysqldump #{auth}#{database_name} > #{output_file}"
system(command)
unless $CHILD_STATUS.exitstatus == 0

puts "There was a problem running '#{command}'"
exit 1

end

Currently, when our app exits with a nonzero status, it outputs a generic
error message. This message doesn’t tell the user the nature of the problem,
only that something went wrong. mysqldump actually produces a specific mes-
sage on its standard error stream. We can see this by using the UNIX redirect
operator (>) to send mysqldump’s standard output to a file, leaving the standard
error as the only output to our terminal:

$ mysqldump some_nonexistent_database > backup.sql
mysqldump: Got error: 1049: Unknown database 'some_nonexistent_database' \
when selecting the database

backup.sql contains the standard output that mysqldump generated, and we see
the standard error in our terminal; it’s the message about an unknown
database. If we could access this message and pass it along to the user, the
user would know the actual problem.

1. A “database backup” produced by mysqldump is a set of SQL statements that, when
executed, re-create the backed-up database.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dccar/code/play_well/db_backup/bin/db_backup.rb
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

Using Open3 to Access the Standard Output and Error Streams Separately

The combination of system and $CHILD_STATUS that we’ve used so far provides
access only to the exit status of the application. We can get access to the
standard output by using the built-in backtick operator (`) or the %x[] con-
struct, as in stdout =%x[ls -l]. Unfortunately, neither of these constructs provides
access to the standard error stream. To get access to both the standard output
and the standard error independently, we need to use a module from the
standard library called Open3.

Open3 has several useful methods, but the most straightforward is capture3. It’s
so-named because it “captures” the standard output and error streams (each
as a String), as well as the status of the process (as a Process::Status, the same
type of variable as $CHILD_STATUS). We can use this method’s results to augment
our generic error message with the contents of the standard error stream like
so:

play_well/db_backup/bin/db_backup_2.rb
require 'open3'

puts "Running '#{command}'"
stdout_str, stderr_str, status = Open3.capture3(command)➤

unless status.exitstatus == 0
puts "There was a problem running '#{command}'"
puts stderr_str➤

exit -1
end

The logic is exactly the same, except that we have much more information to
give the user when something goes wrong. Since the standard error from
mysqldump contains a useful error message, we’re now in a position to pass it
along to the user:

$ db_backup.rb -u dave.c -p P@ss5word some_nonexistent_database
There was a problem running 'mysqldump -udavec -pP@55word \
some_nonexistent_database > some_nonexistent_database.sql'
mysqldump: Got error: 1049: Unknown database 'some_nonexistent_database' \➤

when selecting the database➤

Our use of the standard error stream allows us to “handle” any error from
mysqldump, such as bad login credentials, which also generates a useful error
message:

$ db_backup.rb -u dave.c -p password some_nonexistent_database
There was a problem running 'mysqldump -udavec -ppassword \
some_nonexistent_database > some_nonexistent_database.sql'
mysqldump: Got error: 1044: Access denied for user 'dave.c'@'localhost'\➤

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dccar/code/play_well/db_backup/bin/db_backup_2.rb
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

to database 'some_nonexistent_database' when selecting the database➤

It’s always good practice to capture the output of the commands you run and
either send it to your app’s output or store it in a log file for later reference
(we’ll see later why you might not want to just send such output to your app’s
output directly). Note that the version of Open3 that is included in Ruby 1.8
is not sufficient for this purpose; it hides the exit code from us. See Open3
and Ruby 1.8, on page 8 for a workaround if you’re stuck using Ruby 1.8.

Now that we can read these output streams from programs we execute, we
need to start writing to them as well. We just added new code to output an
error message, but we used puts, which sends output to the standard output
stream. We need to send our error messages to the right place.

Use STDOUT and STDERR to Send Output to the Correct Stream

Under the covers, puts sends output to STDOUT, which is a constant provided
by Ruby that allows access to the standard output stream. It’s an instance
of IO, and essentially the code puts "hello world" is equivalent to STDOUT.puts "hello
world". Ruby sets another constant, STDERR, to allow output to the standard
error stream (see STDOUT and STDERR vs. $stdout and $stderr, on page 9
for another way to access these streams). Changing our app to use STDERR to
send error messages to the standard error stream is trivial:

play_well/db_backup/bin/db_backup_3.rb
stdout_str, stderr_str, status = Open3.capture3(command)

unless status.success?
STDERR.puts "There was a problem running '#{command}'"➤

STDERR.puts stderr_str.gsub(/^mysqldump: /,'')➤

exit 1
end

You could also use the method warn (provided by Kernel) to output messages
to the standard error stream. Messages sent with warn can be disabled by the
user, using the -W0 flag to ruby (or putting that in the environment variable
RUBYOPTS, which is read by Ruby before running any Ruby app). If you want
to be sure the user sees the message, however, use STDERR.puts.

Users of our app can now use our standard error stream to get any error
messages we might generate. In general, the standard error of apps we call
should be sent to our standard error stream.

We now know how to read output from and write output to the appropriate
error stream, and we’ve started to get a sense of what messages go where.
Error messages go to the standard error stream, and “everything else” goes

• Click HERE to purchase this book now. discuss

Using the Standard Output and Error Streams Appropriately • 7

http://media.pragprog.com/titles/dccar/code/play_well/db_backup/bin/db_backup_3.rb
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

Open3 and Ruby 1.8

Open3 in Ruby 1.8 is far less useful than the version that ships with Ruby 1.9.2. Its
main failing is that it doesn’t provide access to the exit code of our process.
$CHILD_STATUS is set; however, the exitstatus method always returns zero, even if the
underlying process exited nonzero.

If you can’t use Ruby 1.9.2 but still want the benefits of 1.9.2’s much-improved Open3
class, there is a library called Open4a that works with Ruby 1.8 to do exactly what
we need. We could use it like so:

$ gem install open4

require 'open4'

pid, stdin, stdout, stderr = Open4::popen4(command)
_, status = Process::waitpid2(pid)
unless status.exitstatus == 0

puts "There was a problem running '#{command}'"
puts stderr

end

Open4 has the advantage of working on versions of Ruby 1.8 and newer. If you don’t
need 1.8 compatibility, using the built-in Open3 is preferred, since it’s included with
Ruby. However, it’s nice to know that a third-party gem can do most of what we want
on 1.8.

a. https://github.com/ahoward/open4

to the standard output stream. How do we know what’s an “error message” and
what’s not? And for our “normal” output, what format should we use to be
most interoperable with other applications?

Use the standard error stream for any message that isn’t the proper, expected
output of your application. We can take a cue from mysqldump here; mysqldump
produces the database backup, as SQL, to its standard output. Everything
else it produces goes to the standard error. It’s also important to produce
something to the standard error if your app is going to exit nonzero; this is
the only way to tell the user what went wrong.

The standard output, however, is a bit more complicated. You’ll notice that
mysqldump produces a very specific format of output to the standard output
(SQL). There’s a reason for this. Its output is designed to be handed off,
directly, as input to another app. Achieving this is not nearly as straightfor-
ward as producing a human-readable error message, as we’ll see in the next
section.

8 •

• Click HERE to purchase this book now. discuss

https://github.com/ahoward/open4
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

STDOUT and STDERR vs. $stdout and $stderr

In addition to assigning the constants STDOUT and STDERR to the standard output and
error streams, respectively, Ruby also assigns the global variables $stdout and $stderr
to these two streams (in fact, puts uses $stdout internally).

Deciding which one to use is a mostly a matter of taste, but it’s worth noting that by
using the variable forms, you can easily reassign the streams each represents.
Although reassigning the value of a constant is possible in Ruby, it’s more straight-
forward to reassign the value of a variable. For example, you might want to reassign
your input and output during testing to capture what’s going to the standard error
or output streams.

We’ll use the constant forms in this book, because we want to think of the standard
output and error streams as immutable. The caller of our app should decide whether
these streams should be redirected elsewhere, and if we ever need to send output to
one of the streams or another IO instance, we would abstract that out, rather than
reassign $stdin.

• Click HERE to purchase this book now. discuss

Using the Standard Output and Error Streams Appropriately • 9

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

