
Extracted from:

Build Awesome Command-Line
Applications in Ruby

Control Your Computer, Simplify Your Life

This PDF file contains pages extracted from Build Awesome Command-Line Appli-
cations in Ruby, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-91-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

2.1 Understanding the Command Line: Options, Arguments, and Commands

To tell a command-line application how to do its work, you typically need to
enter more than just the name of its executable. For example, we must tell
grep which files we want it to search. The database backup app, db_backup.rb,
that we introduced in the previous chapter needs a username and password
and a database name in order to do its work. The primary way to give an app
the information it needs is via options and arguments, as depicted in Figure
1, Basic parts of a command-line app invocation, on page 6. Note that this
format isn’t imposed by the operating system but is based on the GNU stan-
dard for command-line apps.1 Before we learn how to make a command-line
interface that can parse and accept options and arguments, we need to delve
a bit deeper into their idioms and conventions. We’ll start with options and
move on to arguments. After that, we’ll discuss commands, which are a dis-
tinguishing feature of command suites.

Options

Options are the way in which a user modifies the behavior of your app. Con-
sider the two invocations of ls shown here. In the first, we omit options and
see the default behavior. In the second, we use the -l option to modify the
listing format.

$ ls
one.jpg two.jpg three.jpg
$ ls -l
-rw-r--r-- 1 davec staff 14005 Jul 13 19:06 one.jpg
-rw-r--r-- 1 davec staff 14005 Jul 11 13:06 two.jpg
-rw-r--r-- 1 davec staff 14005 Jun 10 09:45 three.jpg

Options come in two forms: long and short.

Short-form options
Short-form options are preceded by a dash and are only one character
long, for example -l. Short-form options can be combined after a single
dash, as in the following example. For example, the following two lines of
code produce exactly the same result:

ls -l -a -t

ls -lat

1. http://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html

• Click HERE to purchase this book now. discuss

http://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html
http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

grep --ignore-case -r "some string" /tmp

Executable Options Arguments

Figure 1—Basic parts of a command-line app invocation

Long-form options
Long-form options are preceded by two dashes and, strictly speaking,
consist of two or more characters. However, long-form options are usually
complete words (or even several words, separated by dashes). The reason
for this is to be explicit about what the option means; with a short-form
option, the single letter is often a mnemonic. With long-form options, the
convention is to spell the word for what the option does. In the command
curl --basic http://www.google.com, for example, --basic is a single, long-form option.
Unlike short options, long options cannot be combined; each must be
entered separately, separated by spaces on the command line.

Command-line options can be one of two types: switches, which are used to
turn options on and off and do not take arguments, and flags, which take
arguments, as shown in Figure 2, A command-line invocation with switches
and flags, on page 7. Flags typically require arguments but, strictly speaking,
don’t need to do so. They just need to accept them. We’ll talk more about this
in Chapter 5, Delight Casual Users, on page ?.

Typically, if a switch is in the long-form (for example --foo), which turns “on”
some behavior, there is also another switch preceded with no- (for example
--no-foo) that turns “off” the behavior.

Finally, long-form flags take their argument via an equal sign, whereas in the
short form of a flag, an equal sign is typically not used. For example, the curl
command, which makes HTTP requests, provides both short-form and long-
form flags to specify an HTTP request method: -X and --request, respectively.
The following example invocations show how to properly pass arguments to
those flags:

curl -X POST http://www.google.com

curl --request=POST http://www.google.com

Although some apps do not require an equal sign between a long-form flag
and its argument, your apps should always accept an equal sign, because

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

grep --ignore-case "some string" /tmp

Switch (in long form)

Flag (in short form)

-C 4

Figure 2—A command-line invocation with switches and flags

this is the idiomatic way of giving a flag its argument. We’ll see later in this
chapter that the tools provided by Ruby and its open source ecosystem make
it easy to ensure your app follows this convention.

Arguments

As shown in Figure 1, Basic parts of a command-line app invocation, on page
6, arguments are the elements of a command line that aren’t options. Rather,
arguments represent the objects that the command-line app will operate on.
Typically, these objects are file or directory names, but this depends on the
app. We might design our database backup app to treat the arguments as
the names of the databases to back up.

Not all command-line apps take arguments, while others take an arbitrary
number of them. Typically, if your app operates on a file, it’s customary to
accept any number of filenames as arguments and to operate on them one
at a time.

Commands

Figure 1, Basic parts of a command-line app invocation, on page 6 shows a
diagram of a basic command-line invocation with the main elements of the
command line labeled.

For simple command-line applications, options and arguments are all you
need to create an interface that users will find easy to use. Some apps, how-
ever, are a bit more complicated. Consider git, the popular distributed version
control system. git packs a lot of functionality. It can add files to a repository,
send them to a remote repository, examine a repository, or fetch changes
from another user’s repository. Originally, git was packaged as a collection of
individual command-line apps. For example, to commit changes, you would
execute the git-commit application. To fetch files from a remote repository, you

• Click HERE to purchase this book now. discuss

Understanding the Command Line: Options, Arguments, and Commands • 7

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

would execute git-fetch. While each command provided its own options and
arguments, there was some overlap.

For example, almost every git command provided a --no-pager option, which told
git not to send output through a pager like more. Under the covers, there was
a lot of shared code as well. Eventually, git was repackaged as a single exe-
cutable that operated as a command suite. Instead of running git-commit, you
run git commit. The single-purpose command-line app git-commit now becomes
a command to the new command-suite app, git.

A command in a command-line invocation isn’t like an option or an argument;
it has a more specific meaning. A command is how you specify the action to
take from among a potentially large or complex set of available actions. If you
look around the Ruby ecosystem, you’ll see that the use of command suites
is quite common. gem, rails, and bundler are all types of command suites.

Figure 3, Basic parts of a command-suite invocation, on page 9 shows a
command-suite invocation, with the command’s position on the command
line highlighted.

You won’t always design your app as a command suite; only if your app is
complex enough that different behaviors are warranted will you use this style
of interface. Further, if you do decide to design your app as a command suite,
your app should require a command (we’ll talk about how your app should
behave when the command is omitted in Chapter 3, Be Helpful, on page ?).

The command names in your command suite should be short but expressive,
with short forms available for commonly used or lengthier commands. For
example, Subversion, the version control system used by many developers,
accepts the short-form co in place of its checkout command.

A command suite can still accept options; however, their position on the
command line affects how they are interpreted.

Global options
Options that you enter before the command are known as global options.
Global options affect the global behavior of an app and can be used with
any command in the suite. Recall our discussion of the --no-pager option
for git? This option affects all of git’s commands. We know this because it
comes before the command on the command line, as shown in Figure 3,
Basic parts of a command-suite invocation, on page 9.

Command options
Options that follow a command are known as command-specific options
or simply command options. These options have meaning only in the

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

git --no-pager origin_master

Executable Command Arguments

push -v

Global Options Command Options

Figure 3—Basic parts of a command-suite invocation

context of their command. Note that they can also have the same names
as global options. For example, if our to-do list app took a global option
-f to indicate where to find the to-do list’s file, the list command might also
take an -f to indicate a “full” listing.

The command-line invocation would be todo -f ~/my_todos.txt list -f. Since the
first -f comes before the command and is a global option, we won’t confuse
it for the second -f, which is a command option.

Most command-line apps follow the conventions we’ve just discussed. If your
app follows them as well, users will have an easier time learning and using
your app’s interface. For example, if your app accepts long-form flags but
doesn’t allow the use of an equal sign to separate the flag from its argument,
users will be frustrated.

The good news is that it’s very easy to create a Ruby app that follows all of
the conventions we’ve discussed in this section. We’ll start by enhancing our
Chapter 1 database backup app from Chapter 1, Have a Clear and Concise
Purpose, on page ? to demonstrate how to make an easy-to-use, conventional
command-line application using OptionParser. After that, we’ll use GLI to enhance
our to-do list app, creating an idiomatic command suite that’s easy for our
users to use and easy for us to implement.

• Click HERE to purchase this book now. discuss

Understanding the Command Line: Options, Arguments, and Commands • 9

http://pragprog.com/titles/dccar
http://forums.pragprog.com/forums/dccar

