
Extracted from:

Domain-Driven Design
Using Naked Objects

This PDF file contains pages extracted from Domain-Driven Design, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Dan Haywood.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-44-1

ISBN-13: 978-1-934356-44-9

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-16

http://www.pragprog.com

DISABLING CLASS MEMBERS 112

Run your application to make sure it all works as expected.

So much for validation. However, implementing such rules still allows

our user to attempt to modify the property or collection or to attempt

invoke the action. What if we said that once it’s set, you shouldn’t be

able to modify the Car’s RegistrationNumber at all? For this, we need to

make the property read-only. In Naked Objects parlance, we disable it.

6.2 Disabling Class Members

Disabling a class member is a stronger constraint than validation; it

prevents the property or collection from being modified or an action

from being invoked. . . period. Typically this is because using the class

member doesn’t make sense given the current state of the domain

object. For example, if one action is called “go” and the other “stop,”

then presumably only one is active at a time.

In terms of the user interface, you can think of a disabled class mem-

ber as being grayed out, and you might want to describe it in these

terms when demonstrating and discussing the domain model with your

domain experts. Indeed, in non–Naked Objects applications you have

built, you’ve almost certainly implemented this responsibility within the

presentation layer. But this is an area where Naked Objects has strong

opinions: such responsibilities should reside in the domain layer, not

the presentation layer. In any case, the discussion is moot; we imple-

ment the rule on the domain object because in Naked Objects there is

literally nowhere else to put it!

As for all the business rules, we can disable class members either

declaratively or imperatively. Let’s use CarServ to look at each.

Disabling Declaratively

Preventing our user from changing the Car’s RegistrationNumber property

declaratively really couldn’t be much simpler:

Download chapter06/Car-RegistrationNumber-disabled.java

@Disabled

public String getRegistrationNumber() { ... }

Make this change, and then run the application. As shown in Fig-

ure 6.1, on the next page, you shouldn’t be able to modify the property.

The @Disabled annotation can also be applied to collections and to

actions. Indeed, it is one of the most commonly used annotations, and

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/dhnako/code/chapter06/Car-RegistrationNumber-disabled.java
http://www.pragprog.com/titles/dhnako

DISABLING CLASS MEMBERS 113

Figure 6.1: Disabled properties cannot be edited.

there a couple of places in CarServ where we ought to use it. Cars are

now created only by Customers (as opposed to using the CarRepository).

However:

• Currently we can remove a Car from a Customer’s Cars() collection,

leaving an orphaned Car with no owner. We can fix this by anno-

tating the collection as @Disabled.

• For the other side of this relationship, Car’s OwningCustomer prop-

erty, we should also annotate this property as @Disabled (and re-

move the redundant @Optional annotation).

Similarly, we should make the Car-Service bidirectional relationship

read-only, by annotating both Car’s Services collection and Service’s Car

property as @Disabled.

In a similar vein, it doesn’t really make sense to change the Model of a

Car once it has been created. So, also add the annotation to the Car’s

Model property.

Go ahead and apply all these changes and check that this works. Then

we’ll move onto the imperative approach.

Disabling Imperatively

To disable imperatively, we write a disableXxx() supporting method, anal-

ogous to the validateXxx() methods we saw for validation. The framework

looks for the presence of this method and, if it exists, will call it first to

determine whether to make the property or collection modifiable/action

invokable.

To demonstrate this, let’s consider the Customer’s deleteCar() action. It

doesn’t make much sense to try to invoke this for a Customer that has

no Cars, so we should disable it in these cases.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/dhnako

DISABLING CLASS MEMBERS 114

Figure 6.2: The object’s state may disable members.

That’s easily done:

Download chapter06/Customer-deleteCar-disable.java

public String disableDeleteCar() {

return getCars().size() == 0? "No cars to delete": null;

}

Add this code, and try your revised application (use the nopdis tem-

plate). As shown in Figure 6.2, the action should be disabled.

As I already mentioned, we can also use a disableXxx() method for prop-

erties and collections. To see this in action, let’s add a rule to prevent

the Customer’s Notes property from being updated unless the Customer

has at least one Car. It’s a bit contrived as an example but easy enough

to implement:

Download chapter06/Customer-Notes-disable.java

public String disableNotes() {

return getCars().size() == 0?

"Can only add notes for customers with cars":null;

}

Disabling is stricter than validation because although validation might

let a change through (so long as the value you provide is valid), dis-

abling will never do so. Our final category of business rule is even

stricter—not being able to see the class member in the first place.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-deleteCar-disable.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Notes-disable.java
http://www.pragprog.com/titles/dhnako

HIDING CLASS MEMBERS 115

Factor Out Ruthlessly

Both our deleteCar() action and our Notes property now have a
rule that has to do with there being no Cars in the Cars collec-
tion. To better express intent, factor this out:

Download chapter06/Customer-Notes-disable-refactored.java

public String disableDeleteCar() {
return doesntOwnAnyCars()? "No cars to delete": null;

}
...
public String disableNotes() {

return doesntOwnAnyCars()?
"Can only add notes for customers with cars":null;

}
private boolean doesntOwnAnyCars() {

return getCars().size() == 0;
}

It’s a simple change but a great improvement!

6.3 Hiding Class Members

The strongest of our three rules is the first one that the framework

checks: should the class member even be visible?

For disabling class members, I made the observation that you may be

more accustomed to implementing that type of rule in the presenta-

tion layer. If that’s the case, then you almost definitely will have imple-

mented this rule in the presentation layer too. Even so, it too is fun-

damentally a domain responsibility. For example, when an object tran-

sitions between two states, some of its members might be relevant in

only one of those states. If the user selects to pay by credit card, then

the properties for capturing the credit card details are relevant (and so

should be shown); if they pay by cash, then these same properties are

irrelevant (and so should be hidden).

Having said that, the most common reason for hiding a class member

is because it is really part of the “inner workings” of the object, not

to be exposed in a Naked Objects viewer. This occurs with methods

that are intended to be called programmatically but that—for whatever

implementation reason—happen to have public visibility.

As for the other two rule types, we can hide the class member either

declaratively or imperatively. Let’s look at the declarative case first.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Notes-disable-refactored.java
http://www.pragprog.com/titles/dhnako

HIDING CLASS MEMBERS 116

Hiding Declaratively

In Section 5.4, Adding Finders to Repositories, on page 105, we imple-

mented a version of the findByName() action on the CustomerRepository.

Let’s take a look at this code again:

Download chapter06/CustomerRepository-findByName.java

public List<Customer> findByName(

@Optional

@Named("Last Name")

final String lastName,

@Optional

@Named("First Name")

final String firstName) {

return allMatches(Customer.class, new Filter<Customer>() {

public boolean accept(final Customer customer) {

return matches(customer, firstName, lastName);

}});

}

// ...

private static boolean matches(

final Customer customer,

final String firstName, final String lastName) {

return nullSafeEquals(customer.getFirstName(), firstName) ||

nullSafeEquals(customer.getLastName(), lastName);

}

private static <T> boolean nullSafeEquals(final T s1, final T s2) {

return s1 == null && s2 == null ||

s1 != null && s2 != null && s1.equals(s2);

}

That matches() method doesn’t look right on CustomerRepository. Far

nicer would be for Customer to do the matching itself. Let’s change Cus-

tomerRepository first:

Download chapter06/CustomerRepository-findByName-refactored.java

public List<Customer> findByName(

@Optional

@Named("Last Name")

final String lastName,

@Optional

@Named("First Name")

final String firstName) {

return allMatches(Customer.class, new Filter<Customer>() {

public boolean accept(final Customer customer) {

return customer.matches(firstName, lastName);

}});

}

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/dhnako/code/chapter06/CustomerRepository-findByName.java
http://media.pragprog.com/titles/dhnako/code/chapter06/CustomerRepository-findByName-refactored.java
http://www.pragprog.com/titles/dhnako

HIDING CLASS MEMBERS 117

Subtractive Programming

One of the main responsibilities of a business analyst is to iden-
tify business rules, documenting them in specifications docu-
ments or in UML, or even semiformally using the Object Con-
straint Language (OCL). Meanwhile, the developer’s responsi-
bility is to implement the functionality up to the point where the
constraints are. . . but no further!

If there’s a gap between what the application can do and
what the spec says it mustn’t do, then we’re left wondering:
is this an omission in the application or an omission in the spec?

With Naked Objects this problem doesn’t arise. We start off with
an application that has all degrees of freedom, just like a UML
diagram with no constraints. Then, as we analyze and explore
our domain and identify the constraints, we can write code just
as we might have once added an OCL constraint.

I call this subtractive programming: adding constraints subtracts
functionality. Putting aside the fact that Naked Objects is a
highly productive development environment, this is also a much
more honest way of developing software.

And now let’s move the matches() method to Customer:

Download chapter06/Customer-matches.java

@Hidden

public boolean matches(final String firstName, final String lastName) {

return nullSafeEquals(this.getFirstName(), firstName) ||

nullSafeEquals(this.getLastName(), lastName);

}

private static <T> boolean nullSafeEquals(final T s1, final T s2) {

return s1 == null && s2 == null ||

s1 != null && s2 != null && s1.equals(s2);

}

To ensure that this new public method of Customer doesn’t appear as

an action in the user interface, we annotate it as @Hidden. Run your

application to make sure. To double-check, temporarily comment out

the @Hidden annotation and see the action appear.

Let’s now look at the imperative method of hiding members.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-matches.java
http://www.pragprog.com/titles/dhnako

HIDING CLASS MEMBERS 118

Hiding Imperatively

Suppose we’d like to capture feedback from our most valuable Cus-

tomers, which we’ll (slightly naively) define as those that own two or

more Cars. To do this, let’s define a new (multiline, optional) Feedback

property on Customer, using the nop template. You should end up with

the following methods:

Download chapter06/Customer-Feedback.java

private String feedback;

@MultiLine(numberOfLines = 5, preventWrapping = false)

public String getFeedback() { ... }

public void setFeedback(final String feedback) { ... }

Now let’s implement the business rule. Since there’s no point in dis-

playing the Feedback property for Customers that don’t qualify as being

valuable, we’ll just hide it (use the nophid template):

Download chapter06/Customer-Feedback-hide.java

public boolean hideFeedback() {

return !isValuableCustomer();

}

private boolean isValuableCustomer() {

return getCars().size() >= 2;

}

Note that hideFeedback() must be public for the framework to call; on

the other hand, because isValuableCustomer() is private, it won’t appear

in the UI. If we wanted to (and there’s probably a good argument for

this because it does sound like it is part of the ubiquitous language),

we could make the latter public too; it would then appear as a derived

read-only property.

Try adding this code and then adding and removing Cars to your Cus-

tomers. You should find that when they have two or more Cars, then

the Feedback property magically appears; otherwise, it will be hidden,

as illustrated in Figure 6.3, on the following page.

Note that whereas the disableXxx() and validateXxx() supporting methods

return the reason as a String, the hideXxx() method simply returns a

boolean. All that the framework needs to know is, should the class

member be displayed or not?

That takes us through the three main categories of business rules that

Naked Objects supports. However, the declarative forms of disabling

and hiding (@Disabled and @Hidden) are a little more powerful than I let

on. Let’s look at that now.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Feedback.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Feedback-hide.java
http://www.pragprog.com/titles/dhnako

DECLARATIVE RULES AND THE OBJECT LIFE CYCLE 119

Figure 6.3: The object’s state may hide members.

6.4 Declarative Rules and the Object Life Cycle

Very often class members can be used or are visible dependent on

the object’s state only, in particular whether the object is persistent.

A property may be disabled if the object is still unsaved; conversely, an

action might be visible only when the object has been saved.

Because this is a common requirement, the @Disabled and @Hidden

annotations both provide support for this. Each optionally takes an

attribute—an instance of the When enumerated type (also in the applib).

The default value is When.ALWAYS, so if omitted, we are stating that the

class member should be disabled or hidden at all times. The other val-

ues of the When enum, though, allow us to qualify when these annota-

tions apply, based on whether the object is persistent or not.

For example, imagine we were building a security management sys-

tem where we capture Users as domain objects. When first created,

the administrator might select the username and enter an initial pass-

word; to do that, they will obviously need a field in the UI to fill in.

However, once the new User object has been persisted, we almost cer-

tainly don’t want the password visible, not even to the administrator.

To capture this rule, we would use an @Hidden(When.ONCE_PERSISTED).

Conversely, an action to change the password would be annotated as

@Hidden(When.UNTIL_PERSISTED).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/dhnako

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Domain-Driven Design using Naked Objects Home Page

http://pragprog.com/titles/dhnako

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/dhnako.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/dhnako
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/dhnako
www.pragprog.com/catalog

