
Extracted from:

Domain-Driven Design
using Naked Objects

This PDF file contains pages extracted from Domain-Driven Design, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Dan Haywood.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-44-1

ISBN-13: 978-1-934356-44-9

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-16

http://www.pragprog.com


Chapter 1

Getting Started
To stop himself from procrastinating in his work, the Greek orator

Demosthenes would shave off half his beard. Too embarrassed to go

outside and with nothing else to do, his work got done.

We could learn a lesson or two from old Demosthenes. After all, we

forever seem to be taking an old concept and inventing a new technology

around it (always remembering to invent a new acronym, of course)—

anything, it would seem, instead of getting down to the real work of

solving business problems.

Domain-driven design (hereafter DDD) puts the emphasis elsewhere,

“tackling complexity in the heart of software.” And Naked Objects—an

open source Java framework—helps you build your business applica-

tions with ease. No beard shaving necessary, indeed.

In this chapter, we’re going to briefly describe the key ideas underlying

DDD, identify some of the challenges of applying these ideas, and see

for ourselves how Naked Objects makes our task that much easier.

1.1 Understanding Domain-Driven Design

There’s no doubt that we developers love the challenge of understanding

and deploying complex technologies. But understanding the nuances

and subtleties of the business domain itself is just as great a chal-

lenge, perhaps more so. If we devoted our efforts to understanding and

addressing those subtleties, we could build better, cleaner, and more

maintainable software that did a better job for our stakeholders. And

there’s no doubt that our stakeholders would thank us for it.



THE ESSENTIALS OF DDD 24

A couple of years back Eric Evans wrote his book Domain-Driven Design

[Eva03], which is well on its way to becoming a seminal work. In fact,

most if not all of the ideas in Evans’ book have been expressed before,

but what he did was pull those ideas together to show how predom-

inantly object-oriented techniques can be used to develop rich, deep,

insightful, and ultimately useful business applications.

So, let’s start off by reviewing the essential ideas of DDD.

1.2 The Essentials of DDD

There are two central ideas at the heart of domain-driven design. The

ubiquitous language is about getting the whole team (both domain ex-

perts and developers) to communicate more transparently using a

domain model. Meanwhile, model-driven design is about capturing that

model in a very straightforward manner in code. Let’s look at each in

turn.

Creating a Ubiquitous Language

It’s no secret that the IT industry is plagued by project failures. Too

often systems take longer than intended to implement, and when finally

implemented, they don’t address the real requirements anyway.

Over the years we in IT have tried various approaches to address this

failing. Using waterfall methodologies, we’ve asked for requirements to

be fully and precisely written down before starting on anything else. Or,

using agile methodologies, we’ve realized that requirements are likely to

change anyway and have sought to deliver systems incrementally using

feedback loops to refine the implementation.

But let’s not get distracted talking about methodologies. At the end

of the day what really matters is communication between the domain

experts (that is, the business) who need the system and the techies

actually implementing it. If the two don’t have and cannot evolve a

shared understanding of what is required, then the chance of delivering

a useful system will be next to nothing.

Bridging this gap is traditionally what business analysts are for; they

act as interpreters between the domain experts and the developers.

However, this still means there are two (or more) languages in use,

making it difficult to verify that the system being built is correct. If the

analyst mistranslates a requirement, then neither the domain expert

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/dhnako


THE ESSENTIALS OF DDD 25

DDD
in context. . .

Ubiquitous Language

Build a common language between the domain experts and
developers by using the concepts of the domain model as the
primary means of communication. Use the terms in speech, in
diagrams, in writing, and when presenting.

If an idea cannot be expressed using this set of concepts, then
go back and extend the model. Look for and remove ambigu-
ities and inconsistencies.

nor the application developer will discover this until (at best) the appli-

cation is first demonstrated or (much worse) an end user sounds the

alarm once the application has been deployed into production.

Rather than trying to translate between a business language and a

technical language, with DDD we aim to have the business and devel-

opers using the same terms for the same concepts in order to create

a single domain model. This domain model identifies the relevant con-

cepts of the domain, how they relate, and ultimately where the respon-

sibilities are. This single domain model provides the vocabulary for the

ubiquitous language for our system.1

Creating a ubiquitous language calls upon everyone involved in the sys-

tem’s development to express what they are doing through the vocab-

ulary provided by the model. If this can’t be done, then our model is

incomplete. Finding the missing words deepens our understanding of

the domain being modeled.

This might sound like nothing more than me insisting that the develop-

ers shouldn’t use jargon when talking to the business. Well, that’s true

enough, but it’s not a one-way street. A ubiquitous language demands

that the developers work hard to understand the problem domain, but

it also demands that the business works hard in being precise in its

naming and descriptions of those concepts. After all, ultimately the

developers will have to express those concepts in a computer program-

ming language.

1. In Extreme Programming, there is a similar idea called a system of names. But ubiq-

uitous language is much more evocative.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/dhnako


THE ESSENTIALS OF DDD 26

Also, although here I’m talking about the “domain experts” as being

a homogeneous group of people, often they may come from different

branches of the business. Even if we weren’t building a computer sys-

tem, there’s a lot of value in helping the domain experts standard-

ize their own terminology. Is the marketing department’s “prospect”

the same as sales’ “customer,” and is that the same as an after-sales

“contract”?

The need for precision within the ubiquitous language also helps us

scope the system. Most business processes evolve piecemeal and are

often quite ill-defined. If the domain experts have a very good idea of

what the business process should be, then that’s a good candidate for

automation, that is, including it in the scope of the system. But if the

domain experts find it hard to agree, then it’s probably best to leave

it out. After all, human beings are rather more capable of dealing with

fuzzy situations than computers.

So, if the development team (business and developers together) continu-

ally searches to build their ubiquitous language, then the domain model

naturally becomes richer as the nuances of the domain are uncovered.

At the same time, the knowledge of the business domain experts also

deepens as edge conditions and contradictions that have previously

been overlooked are explored.

We use the ubiquitous language to build up a domain model. But what

do we do with that model? The answer to that is the second of our

central ideas.

Model-Driven Design

Of the various methodologies that the IT industry has tried, many advo-

cate the production of separate analysis models and implementation

models. A recent example is that of the OMG’s Model-Driven Archi-

tecture (MDA) initiative, with its platform-independent model (the PIM)

and a platform-specific model (the PSM).

Bah and humbug! If we use our ubiquitous language just to build up

a high-level analysis model, then we will re-create the communication

divide. The domain experts and business analysts will look only to the

analysis model, and the developers will look only to the implementation

model. Unless the mapping between the two is completely mechanical,

inevitably the two will diverge.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/dhnako


THE ESSENTIALS OF DDD 27

DDD
in context. . .

Model-Driven Design

There must be a straightforward and very literal way to repre-
sent the domain model in terms of software. The model should
balance these two requirements: form the ubiquitous language
of the development team and be representable in code.

Changing the code means changing the model; refining the
model requires a change to the code.

What do we mean by model anyway? For some, the term will bring

to mind UML class or sequence diagrams and the like. But this isn’t

a model; it’s a visual representation of some aspect of a model. No, a

domain model is a group of related concepts, identifying them, nam-

ing them, and defining how they relate. What is in the model depends

on what our objective is. We’re not looking to simply model everything

that’s out there in the real world. Instead, we want to take a relevant

abstraction or simplification of it and then make it do something use-

ful for us. Oft quoted and still true is that a model is neither right nor

wrong, just more or less useful.

For our ubiquitous language to have value, the domain model that

encodes it must have a straightforward, literal representation to the

design of the software, specifically to the implementation. Our soft-

ware’s design should be driven by this model; we should have a model-

driven design.

Here also the word design might mislead; some might again be thinking

of design documents and design diagrams. But by design we mean a

way of organizing the domain concepts, which in turn leads to the way

in which we organize their representation in code.

Luckily, using object-oriented (OO) languages such as Java, this is rel-

atively easy to do; OO is based on a modeling paradigm anyway. We

can express domain concepts using classes and interfaces, and we can

express the relationships between those concepts using associations.

So far so good. Or maybe, so far so much motherhood and apple pie.

Understanding the DDD concepts isn’t the same as being able to apply

them, and some of the DDD ideas can be difficult to put into practice.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/dhnako


INTRODUCING NAKED OBJECTS 28

What this book is about is how Naked Objects eases that path by apply-

ing these central ideas of DDD in a very concrete way. So, now would

be a good time to see how.

1.3 Introducing Naked Objects

Naked Objects is both an architectural pattern and a software frame-

work. The pattern was originally conceived and articulated by Richard

Pawson as a means of engaging business stakeholders and experts in

developing more expressive domain-driven applications. Richard dis-

cusses this in more detail in the foreword.

The framework, then, is an implementation of the pattern to help you

rapidly prototype, develop, and deploy domain-driven applications:

• Rapid prototyping comes from the fact that you can develop an

application without spending any time writing user interface code

or persistence code. This creates a very tight feedback loop with

your domain experts.

• The development support comes from the close integration with

developer tools such as Eclipse (for coding), FitNesse (for testing),

Maven (for building and packaging), and Hudson (for continuous

integration).

• The deployment support comes from Naked Objects’ pluggable

architecture allowing different viewers, persistence mechanisms,

and security. In fact, the domain model has no runtime depen-

dencies on the framework, so you can deploy your application on

any Java-based enterprise architecture with any UI you want.

For more on the original philosophy that drove Naked Objects’ develop-

ment, see Richard Pawson and Robert Matthews’ book, Naked Objects

[PM02], and Richard’s later PhD thesis.2

I could talk at length in a highly theoretical fashion about Naked

Objects and how it relates to DDD for the next thirty pages, but what

we’re going to do instead is see Naked Objects in action.

2. http://www.nakedobjects.org/downloads/Pawson%20thesis.pdf

CLICK HERE to purchase this book now.

http://www.nakedobjects.org/downloads/Pawson%20thesis.pdf
http://www.pragprog.com/titles/dhnako


INTRODUCING NAKED OBJECTS 29

Joe Asks. . .

How Does Naked Objects Compare to Other Frameworks?

Many other frameworks promise rapid application develop-
ment and provide automatically generated user interfaces, so
how do they compare to Naked Objects?

Some of most significant are Rails (for the Ruby program-
ming language), Grails (Groovy), and Spring Roo (Java with
AspectJ).∗ These frameworks all use the classic model-view-
controller (MVC) pattern for web applications, with scaffold-
ing, code-generation, and/or metaprogramming tools for the
controllers and views, as well as convention over configuration
to define how these components interact. The views provided
out of the box by these frameworks tend to be simple CRUD-
style interfaces. More sophisticated behavior is accomplished
by customizing the generated controllers.

For many developers, the most obvious difference of Naked
Objects is its deliberate lack of an explicit controller layer; non-
CRUD behavior is automatically made available in its generic
object-oriented UIs. More sophisticated UIs can be built either
by skinning Naked Objects (see Chapter 15, Integrating with
Web Frameworks, on page 283) or by using a newer viewer that
supports easy customization (see Chapter 18, Deploying the Full
Runtime, on page 347).

Like all of these frameworks, Naked Objects can expose
domain objects as a RESTful web service. However, it has some
other tricks you may not find in a typical MVC framework: it sup-
ports client-server (rich-client) deployments as well as on the
Web; it supports non-RDBMS as well as RDBMS object stores,
with an in-memory object store for rapid prototyping; it sup-
ports domain-driven concepts such as values, repositories, and
domain services; it supports agile scenario testing using Fit-
Nesse; and it puts the domain metamodel at the center, allow-
ing the programming model to be redefined.

∗. The frameworks mentioned here are hosted at http://rubyonrails.org/,
http://www.grails.org, and http://www.springsource.org/roo.

CLICK HERE to purchase this book now.

http://rubyonrails.org/
http://www.grails.org
http://www.springsource.org/roo
http://www.pragprog.com/titles/dhnako


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Domain-Driven Design using Naked Objects Home Page

http://pragprog.com/titles/dhnako

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/dhnako.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/dhnako
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/dhnako
www.pragprog.com/catalog



