Extracted from:

Cucumber Recipes
Automate Anything with BDD Tools and Techniques

This PDF file contains pages extracted from Cucumber Recipes, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
ogrammers

Cucumbe}]iecipes

Automate Anything with
BDD Tools and Techniques

Ian Dees,

Matt Wynne,

and Aslak Hellesay
Edited by Jacquelyn Carter

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-01-7

Encoded using the finest acid-free high-entropy binary digits.

Book version: B1.0—August 15,2012

http://pragprog.com

Recipe 3
Run Slow Setup/Teardown Code With Global Hooks

Problem

You need to do something that takes a while before your first test, such as
launching a browser or waiting for a desktop application to load. You're
familiar with Cucumber’s Before() hook, which runs once per scenario. But
you want something that runs just once overall, so that your setup code
doesn’t slow down your test too much.

Ingredients

e Cucumber’s built-in env.rb file for setup code
 Ruby’s built-in at_exit() hook for teardown code'®
e The Selenium WebDriver browser automation library''

e The Firefox web browser'?

Solution

This recipe starts with a simple web testing project. Before we make our
improvements, the code to start and stop the web browser executes inside
regular Cucumber scenario hooks—and so the tests run more slowly than
they should. We're going to see how to migrate that slow code to global hooks,
so it only runs once.

You don’t have to use any special hooks to run setup code when Cucumber
starts. Just put your one-time startup code in env.rb, and Cucumber will run
it before the first test.

That just leaves one question. With the Before() hook, there was a corresponding
After() hook where you could shut down whatever application or browser you
were using. Where do you put global teardown code that needs to run only
once?

« Click HERE to purchase this book now. discuss

http://www.ruby-doc.org/core-1.9.2/Kernel.html#method-i-at_exit
http://seleniumhq.org/docs/03_webdriver.html#ruby
http://www.firefox.com
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

2

The answer is to use Ruby’s built-in at_exit() method, which allows you to
register a hook that runs just as Cucumber is exiting.

Let’s look at a test that suffers from repeated setup code, and how you might
convert it to use global hooks.

Setup

First, install Selenium WebDriver:

$ gem install selenium-webdriver

Now, create a simple test that has multiple scenarios:

global_hooks/bank.feature
Feature: Banking

Scenario: Deposit
Given I have $0 in my account
...

Scenario: Withdrawal
Given I have $100 in my account
...

Fill in a step definition that requires a web browser:

global_hooks/step_definitions/bank_steps.rb

Given /"I have \$(\d+) in my account$/ do |balance|
@browser.navigate.to 'http://example.com/banking'

end

This code presumes that you've launched a browser and stored a reference
to it in the @browser variable. The traditional approach to managing that vari-
able is to use Before() and After() hooks. Let’s look at that technique first, and
then migrate to global hooks.

Scenario Hooks
Here’s how you might have added per-scenario setup and teardown code
without this recipe:

global_hooks/support/hooks.rb
require 'selenium-webdriver'

Before do
@browser = Selenium::WebDriver.for :firefox

end

After do
@browser.quit

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dhwcr/code/global_hooks/bank.feature
http://media.pragprog.com/titles/dhwcr/code/global_hooks/step_definitions/bank_steps.rb
http://media.pragprog.com/titles/dhwcr/code/global_hooks/support/hooks.rb
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

Run Slow Setup/Teardown Code With Global Hooks ® 3

end

Go ahead and run your feature, taking care to time the results. On Mac and
Linux, you’d type the following:

$ time cucumber bank.feature

On Windows with PowerShell installed, you'd type this instead:'®

C:\Hooks> Measure-Command {cucumber bank.feature}

You should see Firefox launch and exit before and after every step, and the
total execution time will show it. It's time to migrate your startup code to
global hooks.

Global Hooks

You're going to move your browser-launching code out of the Before() hook.
But where to? You may recall that Cucumber is guaranteed to run code in
env.rb before any of your other support code. That makes this file a good place
for one-time setup.

The simplest approach is to run the setup code at file scope and store any
state you need in a global:

global_hooks/support/env.rb
require 'selenium-webdriver'

$browser = Selenium: :WebDriver.for :firefox
at exit { $browser.quit }

Notice the symmetry between the creation of the $browser object and the regis-
tering of an at_exit() hook to tear it down when Ruby exits.

Before you run off and change your step definition to use the $browser global
variable, it’s worth considering the maintenance problems that globals can
cause down the road. Take a moment to package this code up into a module,
and change the global variable to a class-level attribute instead:

global_hooks/support/env.rb
require 'selenium-webdriver'

module HasBrowser
@@browser = Selenium::WebDriver.for :firefox
at exit { @@browser.quit }

end

13. PowerShell comes with Windows 7 and can also be downloaded from
http://www.microsoft.com/powershell.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dhwcr/code/global_hooks/support/env.rb
http://media.pragprog.com/titles/dhwcr/code/global_hooks/support/env.rb
http://www.microsoft.com/powershell
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

°4

Notice that you'’re now storing the browser in a class-level attribute @@browser,
so that its value will be available across scenarios. In a minute, we’ll add an
accessor function for your step definitions to call.

First, though, take a look at the at_exit() hook. You're probably used to seeing
these at file scope, so it may seem a little weird to use it inside a module
definition. It will work just fine here.

Now, about that accessor function. Add the following code inside your module
definition:

global_hooks/support/env.rb

def browser

@@browser
end

One last thing: how do you make the browser() method available to your step
definitions? By adding it to the world,'* a container provided by Cucumber
to store state between steps. You can do this by calling World() at file scope
and passing it the name of your module:

global_hooks/support/env.rb
World(HasBrowser)

Don’t forget to change your step definition to use the new browser() method:

global_hooks/step_definitions/bank_steps.rb

Given /”I have \$(\d+) in my account$/ do |balance|
browser.navigate.to 'http://example.com/banking'

end

Now if you rerun your test, you should see that Firefox starts only once at
the beginning of the run, and exits only once at the end. The total execution
time will be cut almost in half.

Further Exploration

This recipe covered attaching hooks to the World object, which the Cucumber
runtime creates for each scenario. For more on how you can customize this
object’s behavior, see Chapter 7 of The Cucumber Book [WH11].

Most of the time, env.rb is the best place for global setup code. But if your hook
must run specifically after configuration is complete, while still finishing
before the first scenario runs, you can use the AfterConfiguration() hook instead. '®

14. https://github.com/cucumber/cucumber/wiki/A-Whole-New-World

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dhwcr/code/global_hooks/support/env.rb
http://media.pragprog.com/titles/dhwcr/code/global_hooks/support/env.rb
http://media.pragprog.com/titles/dhwcr/code/global_hooks/step_definitions/bank_steps.rb
https://github.com/cucumber/cucumber/wiki/A-Whole-New-World
https://github.com/cucumber/cucumber/wiki/Hooks
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

