Extracted from:

Cucumber Recipes
Automate Anything with BDD Tools and Techniques

This PDF file contains pages extracted from Cucumber Recipes, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
ogrammers

Cucumbe}]iecipes

Automate Anything with
BDD Tools and Techniques

Ian Dees,

Matt Wynne,

and Aslak Hellesay
Edited by Jacquelyn Carter

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-01-7

Encoded using the finest acid-free high-entropy binary digits.

Book version: B1.0—August 15,2012

http://pragprog.com

Recipe 29
Parse HTML Tables

Problem

You're testing a web page containing tabular data (or any repeating data,
really), and you need to compare the contents to a table in your Cucumber
scenario.

Ingredients

e Capybara’ for testing web applications
e Capybara’s arsenal of finders® for traversing patterns in HTML

 XPath® for describing the locations of objects on the page

Solution

Capybara is a Ruby web testing library. It provides a simple API for visiting
web pages and parsing the results. Behind the scenes, Capybara will either
launch a real browser (for non-Ruby web apps) or just call directly into your
server code (for Ruby apps built on Rails, Sinatra, or any other Rack frame-
work).

In this recipe, you'll serve a simple static site using the Sinatra framework,
then use Capybara to find the right table on the page and extract the contents.

Imagine you have a web page containing team rankings for a lawn darts
league, something like Figure 27, A Tale of Two Tables, on page 4. You'd like

to match the results against the ones you expect your algorithm to return.
Any web testing library can scrape a bunch of raw HTML off the page and
hand it to you for processing. But then it'd be up to you to use a DOM parsing
library to loop through that HTML and extract the team names.

7. http://inicklas.github.com/capybara

8. http://rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Finders:find

9. http://www.w3.0org/TR/xpath

« Click HERE to purchase this book now. discuss

http://jnicklas.github.com/capybara
http://rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Finders:find
http://www.w3.org/TR/xpath
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

°4

Leagues Administration

Ranking Team
1 Earache My Eye
2 Front Yardigans

Figure 27—A Tale of Two Tables

Capybara’s finders can spare you that agony. Let’s see how.

The Application

For this recipe, we’ll serve the data as a static HTML file. Put the following
markup in public/lawn_darts.html:

html_tables/public/lawn_darts.html
<!doctype html>
<title>Lawn Darts</title>
<table>
<tr>
<td>Leagues</td>
<td>Administration</td>
</tr>
</table>
<table>
<tr>
<th>Ranking</th>
<th>Team</th>
</tr>
<tr>
<td>1</td>
<td>Earache My Eye</td>
</tr>
<tr>
<td>2</td>
<td>Front Yardigans</td>
</tr>
</table>

You could use Capybara with this file right now by connecting it to the Sele-
nium browser-based framework. But let’s wrap a trivial Ruby application
around it instead, so that we can test through the much faster Rack interface.

First, install the Rack-based Sinatra web framework:

$ gem install sinatra

Now, create a file called lawn_darts_app.rb with the following contents:

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dhwcr/code/html_tables/public/lawn_darts.html
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

Parse HTML Tables ® 5

html_tables/lawn_darts_app.rb
require 'sinatra/base’

class LawnDartsApp < Sinatra::Base
end

Now that we have a Ruby web interface, we can drive this static site from
Cucumber.

Test Setup

Here’s a Cucumber scenario that will check the contents of the table containing
our teams. This code goes in features/league.feature:

html_tables/features/league.feature
Feature: Lawn darts league

Scenario: View teams
When I view the league page
Then I should see the following teams:
Ranking	Team
1	Earache My Eye
2	Front Yardigans

Because this test uses Capybara, now’s a good time to install it:

$ gem install capybara
You'll need to connect Cucumber to Capybara by putting the following code
in features/support/env.rb:

html_tables/features/support/env.rb
require 'capybara/cucumber'
require './lawn darts app'

Capybara.app = LawnDartsApp

Now that Cucumber can drive the site, it’s time to add step definitions to
retrieve and process the HTML.

Scraping HTML

In the first step definition, Capybara needs visit the league page. Create a file
called features/step_definitions/league_steps.rb with the following contents:

html_tables/features/step_definitions/league_steps.rb

When /~I view the league page$/ do
visit '/lawn darts.html'

end

Once we've hit the page, Capybara has the contents ready for us to slice and
dice. We'll do that in the Then step:

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dhwcr/code/html_tables/lawn_darts_app.rb
http://media.pragprog.com/titles/dhwcr/code/html_tables/features/league.feature
http://media.pragprog.com/titles/dhwcr/code/html_tables/features/support/env.rb
http://media.pragprog.com/titles/dhwcr/code/html_tables/features/step_definitions/league_steps.rb
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

*6

html_tables/features/step_definitions/league_steps.rb
Line1 Then /~I should see the following teams:$/ do |expected|
2 rows = find('table:nth-of-type(2)"').all('tr")
3 actual = rows.map { |r| r.all('th,td').map { |c| c.text } }
4 expected.diff! actual
5 end

Let’s walk through that step line by line. At line 2, Capybara’s find() method
retrieves the table element that contains the teams. This is actually the second
table on the page (the first one contains navigation links), so we need to use
XPath’s nth-of-type modifier.

Once we have the table, we call the all() method on it to retrieve all the <tr>
elements on the page.

Each <tr> element may contain multiple cells in the form of <th> or <td> ele-
ments. On line 3, we loop through each row’s cells and retrieve the contents.

Finally, on line 4, we use Cucumber’s diff!() method to compare the actual
table against the expected value, and report a test failure if there are any
differences.

As we've seen, comparing HTML tables is just a matter of combining two
simple pieces. A web scraping library like Capybara does the initial work of
converting the HTML into a standard Ruby array. Cucumber takes over from
there and compares the native Ruby data to what’s in the scenario.

Further Exploration

In this recipe, we tested a Ruby-based web app through a Ruby-specific test
interface. For non-Ruby apps, you can use Capybara with a web browser
through the Selenium layer; see Recipe 3, Run Slow Setup/Teardown Code

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dhwcr/code/html_tables/features/step_definitions/league_steps.rb
http://pragprog.com/titles/dhwcr
http://forums.pragprog.com/forums/dhwcr

