
Extracted from:

Grails
A Quick-Start Guide

This PDF file contains pages extracted from Grails, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Dave Klein.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-46-8

ISBN-13: 978-1-934356-46-3

Printed on acid-free paper.

B6.0 printing, July 28, 2009

Version: 2009-8-7

http://www.pragprog.com

Chapter 1

Introduction
1.1 Let Me Tell You About Grails. . .

Web development is a very rewarding experience. Building an applica-

tion that can run from anywhere in the world is pretty awesome. Even

in a corporate environment, you can deliver new features to your users,

no matter where they are located, without ever touching their computer.

It’s a beautiful thing. Consider also what you can build: the potential

for creativity on the web is unlimited.

The Java platform brings even more power to the party. The Java Servlet

API and the plethora of libraries and frameworks in the Java ecosystem

make it possible to include almost any feature you could want in a web

application. It is an exciting time to be a web developer. However, it’s

not all sweetness and light.

With all this power comes a level of complexity that can be daunting.

With most Java-based web frameworks, there are multiple XML config-

uration files to deal with, along with classes to extend and interfaces

to implement. As a project grows, this complexity seems to increase

exponentially.

Many web application frameworks have been created to address this

problem. So many Java web frameworks have been developed that

you might ask, “Why Grails? Why another framework?” That was my

thought when I first heard about Grails.

I was at a conference which featured sessions on an array of Java-

related technologies, planning to attend several talks on Java Server

Faces, which is what I was working with at the time. During one of

the time slots where there was nothing JSF-related, I wandered into a

HOW DOES GRAILS DO IT? 13

session on Grails by Scott Davis. And I have to say, I was impressed.

But not convinced.

In the past, I had worked with so-called rapid application development

tools on the desktop, and had seen the trade-off that you had to make

to get these “applications in minutes.” As soon as you needed to do

more than the tool was designed for, you were stuck. I didn’t want to

go down that road again. Still, Grails did look like it would be a good

choice for small applications. So I gave it a try.

After using Grails to build a website for our local Java user group, I was

hooked. By day, I was struggling with JSF and EJB (Enterprise Java

Beans); by night, I was having a blast building a website with Grails.

I began to look for ways to take advantage of the brilliant simplicity of

Grails in my day job. After all, I worked in a Java shop, and Grails is a

fully compliant JEE1 framework. It would produce a standard .war file,

which could be deployed on our commercial JEE application server.

Finally, an opportunity presented itself.

It was a small but important public-facing web application, planned as

a six-week JSF/EJB project. With Grails, it was done in three weeks—

and it turned out to be a little less trivial than we thought, because

we needed to integrate with an existing EJB server. We found that the

Grails “magic” was great for most of the application, and provided sig-

nificant productivity boosts. We also found that when we needed to do

something Grails didn’t handle “out of the box,”2 it was easy to dip into

the underlying technologies and do what we needed. There were no

black boxes or brick walls. It wasn’t “the Grails way or the highway.”

We went on to use Grails to rescue another, much larger project that

was in trouble, with similar results. Grails is definitely not just for small

applications!

1.2 How Does Grails Do It?

Grails takes a set of successful frameworks, each of which have made

their own strides toward addressing the complexity of building web

applications, and makes them all simpler, easier to use, and ultimately

more powerful.

1. Java Enterprise Edition.

2. I use this term with some hesitation—http://dave-klein.blogspot.com/2008/08/out-of-box.html.

CLICK HERE to purchase this book now.

http://dave-klein.blogspot.com/2008/08/out-of-box.html
http://www.pragprog.com/dkgrails

WHY THIS BOOK? 14

Grails bundles Spring, Hibernate, Sitemesh, HSQLDB, Jetty, and a

host of other battle-hardened frameworks, and following the principle

of convention over configuration,3 it removes the complexity for most

use cases. And it uses the dynamic Groovy programming language to

magically give us easy access to the combined power of these tools.

Recall from my story that on the projects that I was involved in, Grails

was a replacement for both JSF and EJB. JSF, like Struts before it, and

JSP before that, is intended to address the web tier (the front end). EJB

was the framework we were using to provide persistence, transactions,

and various other services (the back end). Grails addresses the whole

application, and more importantly, it allows us to address the whole

application. Using the frameworks mentioned earlier, Grails gives us

a complete, seamless MVC4 framework that is really more of a web

application platform than just another framework.

1.3 Why This Book?

The idea for this book came about while working on the projects I men-

tioned earlier. I had been working with Grails for a while, but there

were four other developers working with me, and we really could have

used a book to help bring them up to speed quickly. They didn’t need

a reference book yet, but something more than a collection of articles

and blog posts (as helpful as those are).

As Grails’ exposure and acceptance continues to grow, and as more and

more developers have their “Wow!” moments, it will become even more

important to have a resource to help them get started quickly. That’s

the goal of this quick-start guide. It is not intended to be a reference, or

the only Grails book on your shelf. In this book I’ll help you get started

and become productive with Grails, but you will no doubt want to go

beyond that. To help you dig deeper, I’ve included lists of books, web-

sites, blogs and other helpful resources from the Groovy/Grails com-

munity in Appendix B, on page 205.

This book is, however, intended to be more than a cursory introduction.

We will cover all of the basics of Grails and a few advanced topics as

well. When we have finished our time together here, you will under-

stand Grails well enough to use it in real projects. In fact, you will have

3. http://en.wikipedia.org/wiki/Convention_over_Configuration

4. Model View Controller. See http://en.wikipedia.org/wiki/Model-view-controller.

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Convention_over_Configuration
http://en.wikipedia.org/wiki/Model-view-controller
http://www.pragprog.com/dkgrails

WHO SHOULD READ THIS BOOK 15

already used it in a real project, as that is what we are going to do

together. More on that later.

1.4 Who Should Read This Book

This book is aimed at web developers looking for relief from the pain

brought on by the complexity of modern web development. If you dream

in XML and enjoy juggling multiple layers of abstraction at a time, or

if you are in a job where your pay is based on the number of lines of

code you write, then Grails may not be for you. If, on the other hand,

you are looking for a way to be more productive, a way to be able to

focus on the heart of your applications instead of all the technological

bureaucracy, then you’re in the right place.

I am assuming an understanding of web application development, but

you don’t need to be an expert to benefit from Grails and from this

book. An understanding of Java or another object-oriented program-

ming language would be helpful. If you have experience with Spring and

Hibernate you are ahead of the curve, but if you’ve never even heard

of them you’ll do fine. You can go quite far with Grails and be using

Spring and Hibernate extensively without even realizing it. Finally, the

language of Grails is Groovy. I won’t assume that you have any experi-

ence with Groovy, and you won’t need a great deal of it to get going with

Grails. However, some knowledge of Groovy syntax and constructs will

be helpful, so we’ll now embark on a brief tutorial.

1.5 Enough Groovy to Be Dangerous

Groovy is a dynamic language for the Java Virtual Machine (JVM). Of

all the JVM languages, Groovy has the best integration with Java and

probably the lowest barrier to entry for Java developers. Java is con-

sidered by many to be in the “C family” of languages; that is to say that

its syntax borrows heavily from the C language. Other languages in this

family are C++, C#, and, by its close relationship to Java, Groovy. With-

out getting into a debate on whether that syntax family is a good one,

it is one that millions of developers are familiar with. That means that

there are millions of developers that can quickly pick up Groovy!

Groovy, like Spring, Hibernate, and the other frameworks used in Grails,

is included in the Grails install. You do not need to install Groovy to

use Grails. However, Groovy is a great multi-purpose language, and

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GROOVY SYNTAX COMPARED TO JAVA 16

I encourage you to download it and take it for a spin. You will quickly

become more productive in areas like XML processing, database access,

file manipulation, and more. You can download the Groovy installation

and find more information on the Groovy website.5 There are also some

excellent books available on Groovy such as Venkat Subramaniam’s

Programming Groovy [Sub08], Scott Davis’ Groovy Recipes: Greasing the

Wheels of Java [Dav08], and Groovy in Action [Koe07] by Dierk König

and friends.

We’re going to discuss the Groovy features that are most often used in

a Grails application. But first, for the benefit of Java developers, we’ll

look at some of the differences between Java and Groovy.

1.6 Groovy Syntax Compared to Java

Despite the overall syntactic similarities, there are some differences

between Groovy and Java that are worth noting. The first thing you’ll

notice in a block of Groovy code is the lack of semicolons; in Groovy,

semicolons are optional. Return statements are also optional. If there

is no return statement in a method, then the last statement evalu-

ated is returned. Sometimes this makes sense, especially in the case

of small methods that simply return a value or perform a single cal-

culation. Other times it can be confusing. That’s the beauty of the

word “optional”: when return makes code more readable, use it; when

it doesn’t, don’t.

Parentheses for method calls are optional in most cases, the exception

being when calling a method without any arguments. Here are some

examples:

x = someMethodWithArgs arg1, arg2, arg3

y = someMethodWithoutArgs()

Methods without arguments need the parentheses so that Groovy can

tell them apart from properties. Groovy provides “real” properties. All

fields in a Groovy class are given getters and setters at compile time.

When you access a field of a Groovy class, it may look like you are

directly accessing the field, but behind the scenes, the getter or setter

is being called. If you’re not convinced, you can call them explicitly.

They’ll be there even though you didn’t code them.

5. http://groovy.codehaus.org

CLICK HERE to purchase this book now.

http://groovy.codehaus.org
http://www.pragprog.com/dkgrails

GROOVY SYNTAX COMPARED TO JAVA 17

Download introduction/get_property.groovy

class Person {

String name

}

def person = new Person()

person.name = 'Abigail'

assert person.getName() == 'Abigail'

person.setName('Abi')

assert person.name == 'Abi'

If you explicitly declare a get or set method for a property, it will be used

as expected.

Download introduction/explicit_set_property.groovy

class Person {

String name

void setName(String val){

name = val.toUpperCase()

}

}

def person = new Person(name:'Sarah')

assert person.name == 'SARAH'

This last snippet shows a few other differences in Groovy. First, all

Groovy classes automatically get a named-args constructor. This is a

constructor that takes a Map and calls the set method for each key

that corresponds to a property.6 You can easily see how this might save

several lines of code with larger classes. Grails takes advantage of this

feature to assign the values from a web page to a new object instance.

Second, in Groovy, types are optional. Instead of giving a variable an

explicit type, we can use the def keyword to designate that this vari-

able will be dynamically typed. The third difference is the use of == in

the assert statements. In Groovy, == is the same as calling the equals()

method on the left hand operand.

Now, the toUpperCase() method we just used is the same as in Java.

But for a little fun, we can modify that last example to try out one of

the many methods that Groovy adds to the String class.7

6. Any elements in the map that do not correspond to a property are ignored by the

named-args constructor.

7. You can find more goodies in the API docs at

http://groovy.codehaus.org/groovy-jdk/java/lang/String.html.

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/get_property.groovy
http://media.pragprog.com/dkgrails/code/introduction/explicit_set_property.groovy
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://www.pragprog.com/dkgrails

GROOVY STRINGS 18

Download introduction/reverse.groovy

class Person {

String name

void setName(String val){

name = val.toUpperCase().reverse()

}

}

Person p = new Person(name:'Hannah')

assert p.name == 'HANNAH'

It worked. Trust me.

Not only does Groovy enhance the java.lang.String class, but it also adds

an entirely new one.

1.7 Groovy Strings

Groovy adds a new string known as a GString. A GString can be created by

declaring a literal with double quotes; a string literal with single quotes

is a java.lang.String. A GString can be used in place of a Java String. If

a method is expecting a String and is given a GString, it will be cast at

runtime.

The beauty and power of the GString is its ability to evaluate embedded

Groovy expressions. Groovy expressions can be designated in two ways.

For simple values that are not directly adjacent to any plain text, you

can just use a dollar sign, like this:

"Hello $name"

For more involved expressions, you can use the dollar sign and a pair

of curly braces:

"The 5th letter in 'Encyclopedia' is ${'Encyclopedia'[4]}"

There can be any number of expressions in a given GString, and single

quotes can be embedded without any escaping. This comes in handy

when generating HTML, as we’ll see later. For now, let’s take a look at

the GString in action.

Download introduction/hello_groovy_string.groovy

def name = 'Zachary'

def x = 3

def y = 7

def groovyString = "Hello ${name}, did you know that $x x $y equals ${x*y}?"

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/reverse.groovy
http://media.pragprog.com/dkgrails/code/introduction/hello_groovy_string.groovy
http://www.pragprog.com/dkgrails

GROOVY CLOSURES 19

assert groovyString == 'Hello Zachary, did you know that 3 x 7 equals 21?'

1.8 Groovy Closures

A Groovy Closure, in simple terms, is an executable block of code that

can be assigned to a variable, passed to a method, and executed.8 Many

of the enhancements Groovy has made to the standard Java libraries

involved adding methods that take a Closure as a parameter.

A Closure is declared by placing code between curly braces. It can be

declared as it is being passed to a method call, or it can be assigned to

a variable and used later. A Closure can take parameters by listing them

after the opening curly brace and separating them from the code with

a dash-rocket (->), like so:

def c = {a, b -> a + b}

If no parameters are declared in a Closure, then one is implicitly pro-

vided: it’s called it. Take a look at the following example.

Download introduction/closure_times.groovy

def name = 'Dave'

def c = {println "$name called this closure ${it+1} time${it > 0 ? 's' : ''}"}

assert c instanceof Closure

5.times(c)

There’s a fair bit of new stuff in these three lines of code. Let’s start

at the top. The variable name is available when the Closure is executed.

Anything that is in scope when the Closure is created will be available

when it is executed, even if it is being executed by code in a differ-

ent class. The Closure is being assigned to the variable c, and has no

declared parameters. It does have and use the implicit parameter it.

The code in this Closure takes advantage of another Groovy shortcut.

What would be in Java System.out.println() is now just println(). When

you look at the text of the GString that follows, it becomes obvious that

this code will only work if whatever calls this Closure passes it a sin-

gle parameter that is a number. That’s just what the times() method,

which Groovy adds to Integer, does. The parentheses are not required

for the times() method, but I added them to emphasize that the Closure

8. There has been much discussion and some confusion over the definition of a “closure”

in programming languages. Some argue that what Groovy defines as a closure isn’t. If

you’re ever in town we can discuss it over a cup of coffee, but for our purposes, we’ll be

referring to closures as defined at http://groovy.codehaus.org/Closures.

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/closure_times.groovy
http://groovy.codehaus.org/Closures
http://www.pragprog.com/dkgrails

GROOVY COLLECTIONS 20

was being passed in as a parameter. The output from this code looks

like this:

Dave called this closure 1 time

Dave called this closure 2 times

Dave called this closure 3 times

Dave called this closure 4 times

Dave called this closure 5 times

There is much more to Closures than we can cover here, and I highly

recommend the coverage of this topic in Programming Groovy [Sub08].

We will see more examples of Closures in action as we look at Groovy

collection classes.

1.9 Groovy Collections

Groovy offers many enhancements to the standard Java collection classes.

We’ll take a look at the three collection types that are most used in

Grails. The List, Map and Set are powerful tools, and Groovy gives them

a new edge. I know—technically Map is not a Collection; that is, it does

not implement the Collection interface. But for our purposes, it is a col-

lection in that it holds objects. So leaving semantic sensitivities aside,

let’s look at what Groovy has done for these classes.

List

One of the first interesting things to learn about the List in Groovy is

that it can be created with a literal declaration.

Download introduction/groovy_list.groovy

def colors = ['Red', 'Green', 'Blue', 'Yellow']

def empty = []

assert colors instanceof List

assert empty instanceof List

assert empty.class.name == 'java.util.ArrayList'

A comma separated list inside of square brackets is an intialized List.

It can contain literal numbers, strings, or any other objects. This is a

good time to point out that in Groovy, everything is an object. Even

simple data types such as int or boolean are auto-boxed objects. (That’s

why we were able to call the times() method on the literal 5 in our ear-

lier example.) The last line of this example shows that the default List

implementation in Groovy is a java.util.ArrayList.

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/groovy_list.groovy
http://www.pragprog.com/dkgrails

GROOVY COLLECTIONS 21

Groovy has also added a host of helpful methods to the List interface.

One of the most useful is each(). This method is actually added to all

objects in Groovy, but it is most useful with collection types. The each()

method on List takes a Closure as a parameter and calls that Closure

for each element in the List, passing in that element as the single “it”

parameter.

Download introduction/groovy_list.groovy

def names = ['Nate', 'Matthew', 'Craig', 'Amanda']

names.each{

println "The name $it contains ${it.size()} characters."

}

This example will print the following output to the console:

The name Nate contains 4 characters.

The name Matthew contains 7 characters.

The name Craig contains 5 characters.

The name Amanda contains 6 characters.

Another handy set of methods added by Groovy are min() and max().

Download introduction/groovy_list.groovy

assert names.min() == 'Amanda'

assert names.max() == 'Nate'

Groovy also provides a few easy ways to sort a List. The simple sort() will

provide a natural sort of the elements in the List. The sort() method can

also take a Closure. If the Closure has no explicit parameters, then the

implied it parameter can be used in an expression to sort on. You can

also give the Closure two parameters to represent two List elements, and

then use those parameters in a comparison expression. Here are some

examples:

Download introduction/groovy_list.groovy

def sortedNames = names.sort()

assert sortedNames == ['Amanda','Craig','Matthew','Nate']

sortedNames = names.sort{it.size()}

assert sortedNames == ['Nate','Craig','Amanda','Matthew']

sortedNames = names.sort{obj1, obj2 ->

obj1[2] <=> obj2[2]

}

assert sortedNames == ['Craig','Amanda','Nate','Matthew']

The first example performs a natural sort on the names. The second

example uses a Closure to sort the names based on their size(). The

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/groovy_list.groovy
http://media.pragprog.com/dkgrails/code/introduction/groovy_list.groovy
http://media.pragprog.com/dkgrails/code/introduction/groovy_list.groovy
http://www.pragprog.com/dkgrails

GROOVY COLLECTIONS 22

last example, though admittedly contrived, is the more interesting one.

In that example we pass a Closure to the sort(). This Closure takes two

parameters which represent two objects to be compared. In the body of

the Closure we use the comparison operator9 to compare some aspect

of the two objects; in this case, and this is the contrived part, we com-

pare the third character in the name with [2]. This type of sort would

make more sense when the List elements are a more complex type and

you need to sort on a combination of properties or a more complex

expression—but you get the point.

Another useful feature of List is that the left shift operator “<<”< can be

used in place of the ” can be used in place of the add() method.

Download introduction/groovy_list.groovy

names << 'Jim'

assert names.contains('Jim')

Map

The Map class contains a collection of key/value pairs. It also can be

created with a literal declaration, like so:

Download introduction/groovy_map.groovy

def family = [boys:7, girls:6, Debbie:1, Dave:1]

def empty = [:]

assert family instanceof Map

assert empty instanceof Map

assert empty.getClass().name == 'java.util.LinkedHashMap'

The Map class in Groovy also has the each() method. When it is given

a Closure without any parameters, the implicit it will be a Map.Entry con-

taining key and value properties. The more common approach is to give

the Closure two parameters: the first parameter will hold the key and the

second parameter will hold the value.

Download introduction/groovy_map.groovy

def favoriteColors = [Ben:'Green',Solomon:'Blue',Joanna:'Red']

favoriteColors.each{key, value ->

println "${key}'s favorite color is ${value}."

}

The output from this code would be:

Ben's favorite color is Green.

9. <=> is a short-cut for the compareTo() method.

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/groovy_list.groovy
http://media.pragprog.com/dkgrails/code/introduction/groovy_map.groovy
http://media.pragprog.com/dkgrails/code/introduction/groovy_map.groovy
http://www.pragprog.com/dkgrails

GROOVY COLLECTIONS 23

Solomon's favorite color is Blue.

Joanna's favorite color is Red.

In Groovy, Map entries can be accessed using dot notation, as if they

were properties. You may have noticed that in our first Map exam-

ple, we had to use empty.getClass().name instead of the Groovy shortcut

empty.class.name. That’s because empty.class would have looked for a key

in empty called class. Other than a few edge cases like that, this is the

preferred way to access Map values.

Download introduction/groovy_map.groovy

assert favoriteColors.Joanna == 'Red'

There is no overridden left shift operator for Map, but adding an element

is still a snap. Assigning a value to a key that doesn’t exist will add that

key and value to the Map.

Download introduction/groovy_map.groovy

favoriteColors.Rebekah = 'Pink'

assert favoriteColors.size() == 4

assert favoriteColors.containsKey('Rebekah')

Set

The Set class also implements the Collection interface, so most of what

we saw with List applies to it as well.Set is the default type for one-to-

many associations in Grails, so we’ll be working with it often. There

are a couple of notable differences between Set and List: first, a Set can’t

contain duplicates, and second, it can’t be accessed with the subscript

operator ([]). This last difference can be a hindrance, but it is easy to

overcome with the toList() method.

Download introduction/groovy_set.groovy

def employees = ['Susannah','Noah','Samuel','Gideon'] as Set

Set empty = []

assert employees instanceof Set

assert empty instanceof Set

assert empty.class.name == 'java.util.HashSet'

employees << 'Joshua'

assert employees.contains('Joshua')

println employees.toList()[3]

In this example we create a Set with three names in it. Since we didn’t

declare employees with a type, we need to cast it as a Set. (The default

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/introduction/groovy_map.groovy
http://media.pragprog.com/dkgrails/code/introduction/groovy_map.groovy
http://media.pragprog.com/dkgrails/code/introduction/groovy_set.groovy
http://www.pragprog.com/dkgrails

WHERE TO FROM HERE? 24

type for a literal declaration like this is ArrayList.) We could have just

declared the type explicitly, as we do with empty on the next line. Then

we add another item to the Set using the handy left shift operator, and

assert() that it is there. Finally, we show that there are now four items

by printing the fourth one with println employees.toList()[3]. The output

from the last line of that example is: Susannah. This brings up another

point about Set: You have no control of the order in which elements are

stored. If you need to specify an order, either sorted or creation order,

you can use a SortedSet or List.

There are many more methods added to these classes that we don’t

have space to cover here. To become more productive in Groovy (and to

have more “Wow!” moments), check out the Groovy JDK docs at http://

groovy.codehaus.org/groovy-jdk.

1.10 Where To From Here?

Now that you have some Groovy basics under your belt, we are ready

to get into Grails. Over the next eleven chapters we will be exploring

most areas of the Grails framework. We won’t spend a great deal of

time on any one feature, and we may not cover every aspect of Grails.

The goal is to give you the knowledge and experience necessary to start

working effectively and productively with Grails, and to point you to the

resources you’ll need as you continue.

“Experience?” you say. “How do I get experience from a book?” This

book is not meant only to be read, but to be used. In the Groovy tutorial

I showed some code snippets and explained them. In the rest of the

book, we will be working together on a real project. By the time you

finish this book, you will have developed and deployed your first full-

featured web application with Grails.

Finally, at the end of the book, there is an appendix containing resources

(websites, blogs, mailing lists) available in the thriving Groovy and Grails

community.

Let’s get started.

1.11 Acknowledgements

First and most of all I thank my creator and savior, Jesus Christ. With-

out Him I could do nothing and I know that every good thing I have

comes from Him (James 1:17). I am also very grateful to the many

CLICK HERE to purchase this book now.

http://groovy.codehaus.org/groovy-jdk
http://groovy.codehaus.org/groovy-jdk
http://www.pragprog.com/dkgrails

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Grails Quick Start’s Home Page

http://pragprog.com/dkgrails

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/dkgrails.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/dkgrails
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/dkgrails
www.pragprog.com/catalog

