
Extracted from:

Grails
A Quick-Start Guide

This PDF file contains pages extracted from Grails, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Dave Klein.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-46-8

ISBN-13: 978-1-934356-46-3

Printed on acid-free paper.

B6.0 printing, July 28, 2009

Version: 2009-8-7

http://www.pragprog.com

GRAILS VIEWS WITH GROOVY SERVER PAGES 83

The Create Action
Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def create = {

def tekEventInstance = new TekEvent()

tekEventInstance.properties = params

return ['tekEventInstance':tekEventInstance]

}

The create action creates a new TekEvent instance and then assigns the

params to its properties property. (We’ll see why this is done shortly.)

Then it returns that instance in a Map with the key of tekEventInstance.

Finally, it renders the create view.

The Save Action
Download beyond/TekDays/grails-app/controllers/TekEventController.groovy

def save = {

def tekEventInstance = new TekEvent(params)

if(!tekEventInstance.hasErrors() && tekEventInstance.save()) {

flash.message = "TekEvent ${tekEventInstance.id} created"

redirect(action:show,id:tekEventInstance.id)

}

else {

render(view:'create',model:[tekEventInstance:tekEventInstance])

}

}

}

The save action is called from the create view. It correlates to the update

action and does pretty much the same thing, minus the concurrency

check (which isn’t an issue when creating new records). If all is well,

the show view is rendered with the newly created instance. If there are

problems, the user is redirected back to the create action. (This is why

the params are assigned to the tekEventInstance.properties in the create

action.)

So there’s a tour of the generated actions of a Grails controller. We only

looked at one of the six controllers that were generated by the generate-

all script, but they all have the same code with different domain classes.

Feel free to browse the rest of them. It should all look very familiar. Now

we’ll see what Grails gives us for views.

5.3 Grails Views with Groovy Server Pages

Grails uses Groovy Server Pages (GSP) for its view layer. If you’ve ever

worked with Java Server Pages, well, you have my sympathy, but GSP

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/beyond/TekDays/grails-app/controllers/TekEventController.groovy
http://media.pragprog.com/dkgrails/code/beyond/TekDays/grails-app/controllers/TekEventController.groovy
http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 84

will seem familiar—only easier to work with. Grails also uses SiteMesh,8

the page decoration framework from OpenSymphony, to assist in the

page layout. SiteMesh will merge each of our .gsp files into a file called

main.gsp. This is what gives a consistent look to all of our pages, as we

saw with the dynamic scaffolding. We’ll begin our tour of the generated

views with main.gsp, followed by the four views generated for the TekEvent

class. Then we’ll look at a couple of the other views that take advantage

of additional Grails features.

Exploring main.gsp

Download beyond/TekDays/grails-app/views/layouts/main.gsp

<html>

<head>

<title><g:layoutTitle default="Grails" /></title>

<link rel="stylesheet"

href="${resource(dir:'css',file:'main.css')}" />

<link rel="shortcut icon"

href="${resource(dir:'images',file:'favicon.ico')}"

type="image/x-icon" />

<g:layoutHead />

<g:javascript library="application" />

</head>

<body>

<div id="spinner" class="spinner" style="display:none;">

</div>

<div class="logo">

</div>

<g:layoutBody />

</body>

</html>

The main.gsp starts out with a <title> in the <head> section. This tag

contains a <g:layoutTitle> tag, which will substitute the <title> from

the view that is being merged. Next, it links in a style sheet and favicon

that will be used by all views. Then there is the <g:layoutHead> tag.

This will merge in the contents of the target view’s <head> section.

The <body> section contains a spinner image, an application logo, and

a <g:layoutBody> tag, which merges in the <body> contents of the

target view.

As you can see, this file gives us a convenient place to make some major

improvements to our application. And that’s just what we’re going to do,

8. http://opensymphony.com/sitemesh

CLICK HERE to purchase this book now.

http://media.pragprog.com/dkgrails/code/beyond/TekDays/grails-app/views/layouts/main.gsp
http://opensymphony.com/sitemesh
http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 85

Figure 5.1: TekEvent List View

as soon as we finish our tour. As we discuss the four generated views,

we will only be looking at portions of them, for the sake of space. I’ll

give you the name and path for each file so you can open the one on

your system and follow along.

The List View

The TekEventlist view is shown in Figure 5.1. You can refer to that image

as we look at the GSP code behind it. You’ll find this code in TekDays/grails-

app/views/tekEvent/list.gsp.

Home

<g:link class="create" action="create">New TekEvent</g:link>

This code creates the button bar just below the Grails logo. We can see

two ways that Grails provides for creating links. The resource() method

takes a relative path and creates a URL, which is assigned to the href

attribute of an anchor tag. The <g:link> tag creates an anchor tag using

the values of the controller, action, and id attributes (if they’re provided).

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 86

If a controller is not provided, the current controller is assumed. In this

case, a link to the create action of the TekEventController will be created.

<g:if test="${flash.message}">

<div class="message">${flash.message}</div>

</g:if>

This code doesn’t show up in Figure 5.1, on the previous page, but

it is important to take note of. Recall that during our discussion of

controllers, we often had code that would store text in the message

element of flash. This is where that text will show up. The <g:if> tag

checks for the existence of flash.message, and if found displays it.

<g:sortableColumn property="name" title="Name" />

<g:sortableColumn property="city" title="City" />

<g:sortableColumn property="description" title="Description" />

<th>Organizer</th>

<g:sortableColumn property="venue" title="Venue" />

The <g:sortableColumn> tag is what Grails uses to provide sorting on

our list view. Note that, by default, this only works with regular proper-

ties, not object references or collections. That is why we see a <th> tag

used for the Organizer property.

<g:each in="${tekEventInstanceList}" status="i"

var="tekEventInstance">

<tr class="${(i % 2) == 0 ? 'odd' : 'even'}">

<td>

<g:link action="show" id="${tekEventInstance.id}">

${fieldValue(bean:tekEventInstance, field:'id')}

</g:link></td>

<td>${fieldValue(bean:tekEventInstance, field:'name')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'city')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'description')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'organizer')}</td>

<td>${fieldValue(bean:tekEventInstance, field:'venue')}</td>

</tr>

</g:each>

This code is the heart of the list view. We start with the <g:each> tag,

which iterates over the list that we passed in from the controller. Each

item in the list is assigned to the tekEventInstance variable. The body

of the <g:each> tag fills in the table row with the properties of the

tekEventInstance. Notice that a Groovy expression is used to determine

the CSS class of the <tr>—powerful stuff! Inside the <td> tags, the

fieldValue() method is used to render the value of each TekEvent prop-

erty. We’ll learn more about the fieldValue() method when we look at the

create view.

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 87

Figure 5.2: TekEvent Show View

<div class="paginateButtons">

<g:paginate total="${tekEventInstanceTotal}" />

</div>

The final portion of the list.gsp we’ll look at is another one that we can’t

see in Figure 5.1, on page 85. The <g:paginate> tag would cause pagi-

nation buttons to show up at the bottom of the list view if we had enough

events displayed to warrant it. This tag uses the total that we passed in

from the controller’s list action.

The Show View

The show view, pictured in Figure 5.2, is in TekDays/grails-app/views/tekEvent/show.gsp.

Open this file now as we look at a few interesting sections.

<tr class="prop">

<td valign="top" class="name">Id:</td>

<td valign="top" class="value">

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 88

${fieldValue(bean:tekEventInstance, field:'id')}

</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Name:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'name')}

</td>

</tr>

This code shows a couple of examples of how Grails displays text prop-

erties. Notice the CSS class hierarchy. The <tr> tag has a prop class

and the <td> tags can have either a name or value class.

<tr class="prop">

<td valign="top" class="name">Organizer:</td>

<td valign="top" class="value">

<g:link controller="tekUser" action="show"

id="${tekEventInstance?.organizer?.id}">

${tekEventInstance?.organizer?.encodeAsHTML()}

</g:link>

</td>

</tr>

Here we have an example of the way Grails displays a related object.

The Organizer property is rendered as a link to the TekUsershow view. The

<g:link> tag has its controller and action attributes set accordingly. The

id is set to a Groovy expression that reads the id property of the organizer

property of the tekEventInstance that we passed in from the controller.

Notice the ? after the tekEventInstance and organizer references: this is

Groovy’s safe navigation operator. When this expression is evaluated, if

either of these items is null, the whole expression evaluates to null and

no exception is thrown. This operator has saved the world from untold

numbers of if blocks!

<tr class="prop">

<td valign="top" class="name">Start Date:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'startDate')}

</td>

</tr>

The startDate is a Date type, and yet it is rendered the same way as a

text property. Grails handles the conversion from Date to String for us.

<tr class="prop">

<td valign="top" class="name">Volunteers:</td>

<td valign="top" style="text-align:left;" class="value">

<g:each var="v" in="${tekEventInstance.volunteers}">

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 89

<g:link controller="tekUser" action="show" id="${v.id}">

${v?.encodeAsHTML()}

</g:link>

</g:each>

</td>

</tr>

The Grails scaffolding renders one-to-many relationships as an unordered

list. Here we see the volunteers property being displayed using a <g:each>

tag inside of a tag. Another thing to notice here is the use of the

encodeAsHTML() method. This method is added to all String objects, and

prevents any HTML code from being processed while the page is render-

ing. This is helpful in defending against cross-site scripting attacks.9

<tr class="prop">

<td valign="top" class="name">Respondents:</td>

<td valign="top" class="value">

${fieldValue(bean:tekEventInstance, field:'respondents')}

</td>

</tr>

Rounding out the show view, we have the respondents collection. This

property is a collection of String objects containing email addresses. This

type of collection is rendered as if it were a single String field. Grails

handles converting it to a comma-separated list, as we can see in Fig-

ure 5.2, on page 87. If we wanted to, we could use a <g:each> tag to

show these as a list or in a table.

The Create View

We can see the create view in Figure 5.3, on the next page. The code for

this view is in TekDays/grails-app/views/tekEvent/create.gsp. Open this file,

and we’ll see what new and exciting things it has in store for us.

<g:hasErrors bean="${tekEventInstance}">

<div class="errors">

<g:renderErrors bean="${tekEventInstance}" as="list" />

</div>

</g:hasErrors>

In Section 5.3, The List View, on page 85, we saw how messages that

we set in the controller are displayed in the view. Here we see another

type of message block. When a domain instance fails to save, errors are

stored in an errors property. The <g:hasErrors> tag is a conditional tag

9. http://en.wikipedia.org/wiki/Cross-site_scripting

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 90

Figure 5.3: TekEvent Create View

that examines the domain instance assigned to its bean attribute and

renders its body if errors are found. In the body of the tag, we find the

<g:renderErrors> tag, which will display the errors in a list at the top

of the page. (See Figure 5.4, on the next page.)

<g:form action="save" method="post" >

The <g:form> tag sets up an HTML form. This tag has controller, action,

and id attributes, which will result in the URL to submit the form to. In

this case, we’re only using the action attribute.

<tr class="prop">

<td valign="top" class="name">

<label for="name">Name:</label>

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 91

Figure 5.4: Built-in Error Handling

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'name','errors')}">

<input type="text"

id="name"

name="name"

value="${fieldValue(bean:tekEventInstance,field:'name')}"/>

</td>

</tr>

The create view uses the same two-column table layout as the show

view. The difference is that here the second column contains HTML

input elements. Notice how the <g:hasErrors> tag is used in a Groovy

expression to determine the CSS class to use. It doesn’t look like a tag,

does it? All GSP tags can also be called as methods. How’s that for

versatile?

Next, the value attribute of the input element is set to another Groovy

expression using the fieldValue() method. This is where this method

really shines.

In Section 5.2, The Save Action, on page 83, we saw that if validation

fails, we redirect the user back to the create view. In this case, we

don’t want to show the actual values of the tekEventInstance. We want

to re-display the values that the user has entered. These values are

stored as part of the errors collection, and fieldValue() knows how to get

them. If there are no errors, then the tekEventInstance properties are

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 92

displayed. This method also calls encodeAsHTML() for us, since that is

almost always what we want.

<tr class="prop">

<td valign="top" class="name">

<label for="description">Description:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'description','errors')}">

<textarea rows="5" cols="40" name="description">

${fieldValue(bean:tekEventInstance, field:'description')}

</textarea>

</td>

</tr>

For the description property, Grails is using a <textarea> element.

<tr class="prop">

<td valign="top" class="name">

<label for="startDate">Start Date:</label>

</td>

<td valign="top" class="value $

{hasErrors(bean:tekEventInstance,field:'startDate','errors')}">

<g:datePicker name="startDate"

value="${tekEventInstance?.startDate}" >

</g:datePicker>

</td>

</tr>

The <g:datePicker> tag renders that series of select elements that we

see in Figure 5.3, on page 90. This tag can be configured to be much

more useful by using the precision and noSelection attributes.10

The Edit View

The last of the scaffolded views is the edit view. See Figure 5.5, on the

following page. You’ll find the code in TekDays/grails-app/views/tekEvent/edit.gsp.

By now, we’ve seen most areas of interest covered in the preceding

views, but open this one up and follow along as we see what nuggets

might be awaiting discovery.

<tr class="prop">

<td valign="top" class="name">

<label for="organizer">Organizer:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'organizer','errors')}">

<g:select optionKey="id" from="${TekUser.list()}"

10. See http://www.grails.org/doc/1.1/ref/Tags/datePicker.html.

CLICK HERE to purchase this book now.

http://www.grails.org/doc/1.1/ref/Tags/datePicker.html
http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 93

Figure 5.5: TekEvent Edit View

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

GRAILS VIEWS WITH GROOVY SERVER PAGES 94

name="organizer.id"

value="${tekEventInstance?.organizer?.id}" >

</g:select>

</td>

</tr>

Here’s something new. For properties that are references to another

domain class, Grails uses a <g:select> tag, which will render a <select>

element loaded with all the available choices for that class. In this case,

we end up with a list of TekUser instances that can be assigned to the

organizer property.

<tr class="prop">

<td valign="top" class="name">

<label for="volunteers">Volunteers:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'volunteers','errors')}">

<g:select name="volunteers" from="${TekUser.list()}"

size="5" multiple="yes" optionKey="id"

value="${tekEventInstance?.volunteers}" />

</td>

</tr>

Grails also uses a <g:select> tag for uni-directional one-to-many rela-

tionships. In this case, the multiple attribute is set to yes and the value

attribute is set to the volunteers collection property. This will render a

multi-select list box loaded with TekUser instances. When submitted, all

of the selected instances are automagically added to the volunteers prop-

erty.

<tr class="prop">

<td valign="top" class="name">

<label for="sponsorships">Sponsorships:</label>

</td>

<td valign="top" class="value

${hasErrors(bean:tekEventInstance,field:'sponsorships','errors')}">

<g:each var="s" in="${tekEventInstance?.sponsorships?}">

<g:link controller="sponsorship" action="show"

id="${s.id}">${s?.encodeAsHTML()}</g:link>

</g:each>

<g:link controller="sponsorship"

params="['tekEvent.id':tekEventInstance?.id]"

action="create">

Add Sponsorship

CLICK HERE to purchase this book now.

http://www.pragprog.com/dkgrails

CONFIGURING A DATABASE 95

</g:link>

</td>

</tr>

In this block, we can see how the sponsorship collection property is ren-

dered as an unordered list of links. We already saw this in Section 5.3,

The Show View, on page 87. What’s interesting here is that immediately

after the tag is closed, there is a <g:link> tag that will render a

link to the create action of the SponsorshipController. The value in the

params attribute will cause this TekEvent instance to be assigned to the

tekEvent property of the newly created Sponsorship.

And this concludes our tour of the code behind the scaffolded views.

Now that this code is available to us and we’ve got a working under-

standing of what it is doing, we can see how we could make a few

changes to make our application a little better looking and easier to use.

We’ll do that beginning in the next chapter, but first, let’s see how we

can hook-up to a real database so we no longer lose our data changes

every time we restart the application.

5.4 Configuring a Database

The in-memory database that comes with Grails is handy and we have

been making good use of it, but a time comes in the life of any applica-

tion when you need to have your data stored in a real database. (Hope-

fully this happens before you go to production.) As with most things,

Grails makes this a snap to do.

“Configuration?” You may be wondering what happened to “Convention

over Configuration”. Well, keep in mind that it’s over, not instead of,

and besides, no matter how hard Larry Ellison tries, there’s still no

convention for which database to use.11 Also, Grails takes much of the

pain out of the word configuration by allowing us to write all of our

configuration code in Groovy instead of XML. The information about

our database is in TekDays/grails-app/conf/DataSource.groovy. By default,

it looks like this:

dataSource {

pooled = true

driverClassName = "org.hsqldb.jdbcDriver"

username = "sa"

11. Larry Ellison is the co-founder and CEO of Oracle, maker of the leading enterprise

database. See http://en.wikipedia.org/wiki/Larry_Ellison.

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Larry_Ellison
http://www.pragprog.com/dkgrails

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Grails Quick Start’s Home Page

http://pragprog.com/dkgrails

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/dkgrails.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/dkgrails
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/dkgrails
www.pragprog.com/catalog

