
Extracted from:

Intuitive Python
Productive Development for Projects that Last

This PDF file contains pages extracted from Intuitive Python, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Intuitive Python
Productive Development for Projects that Last

David Muller

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-823-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Calling Other Programs with subprocess
You can use the subprocess standard library module to invoke other command
line programs available on your system and process their results in Python.
You might find the subprocess useful if, for example, you want to call a program
like git from inside Python to learn about the current state of your version
controlled project. Indeed, some examples in this section will combine subprocess
and git to do just that.

Note, if you don’t have git installed on your machine or are not currently in a
directory with a git repository, some of the following examples may not suc-
cessfully execute on your computer. You can download git if you like,9 but it’s
also OK to just follow along with the examples here so you get a sense of the
abilities of the subprocess module (you don’t need any special git knowledge).

You can use subprocess with git to retrieve the name of the current git branch
you are on:

>>> import subprocess
>>> command = ["git", "branch", "--show-current"]
>>> result = subprocess.run(command, capture_output=True)
>>> result.returncode
0
>>> result.stdout
b'main\n'
>>> result.stdout.decode("utf-8").strip()
'main'
>>>

In the preceding example, you call subprocess.run with two arguments. The first
argument (command) is a list of strings specifying the command line program
you want to run. In general, you can think of Python as telling the operating
system to execute as if there were spaces separating them. In other words
["git", "branch", "--show-current"] is roughly translated to git branch --show-current and
executed by the operating system. (Python automatically handles any neces-
sary escaping and quoting for you. This escaping and quoting can be helpful
if, for example, one of the arguments in your list is a file name with a space
in it.)

The second argument capture_output flag instructs Python to record stdout and
stderr and make them available to you in the CompletedProcess object10 returned
by subprocess.run. In the preceding example, the result variable is bound to the

9. https://git-scm.com
10. https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess

• Click HERE to purchase this book now. discuss

https://git-scm.com
https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

CompletedProcess object. result.returncode indicates that the git command you ran
exited with a 0 code. Accessing result.stdout returns bytes with the output of
the underlying git command we ran. Decoding the bytes as utf-811 and calling
strip12 to remove the trailing newline \n character leaves us with a Python string
indicating my current branch name: 'main'.

Let subprocess.run Automatically Decode bytes for You

On Python 3.7 or higher, you can pass text=True to subprocess.run.
subprocess.run will then automatically coerce the resulting bytes in
stdout and stderr to strings and save you from having to call decode
on the bytes yourself.

So far, we’ve only worked with an example where the underlying command
we called worked. What happens if the underlying command failed and
returned a non-0 returncode?

Handling Exceptional Cases with subprocess
Python can automatically raise an exception for you if the underlying command
didn’t exit with a returncode of 0. If you pass check=True to subprocess.run, it will
raise an Exception if the underlying command fails:

>>> import subprocess
>>> subprocess.run(["git", "oops"], check=True)
git: 'oops' is not a git command. See 'git --help'.

The most similar command is
notes

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.9/subprocess.py", line 528, in run

raise CalledProcessError(retcode, process.args,
subprocess.CalledProcessError: Command '['git', 'oops']' returned
non-zero exit status 1.
>>>

git does not support a subcommand named oops, so when you try to execute
git oops, git complains and returns a non-0 returncode. By including the check=True
argument in your subprocess.run call, Python automatically raises a CalledProcessEr-
ror exception for you indicating the failure. This CalledProcessError exception can
be useful if you want your program to exit or otherwise fail if the underlying
command you call doesn’t work.

11. https://en.wikipedia.org/wiki/UTF-8
12. https://docs.python.org/3/library/stdtypes.html#str.strip

• 6

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/UTF-8
https://docs.python.org/3/library/stdtypes.html#str.strip
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

Timing Out Commands Run By subprocess

You can also instruct subprocess to automatically kill the underlying command
if it has not completed after a certain amount of time using the timeout argu-
ment to subprocess.run:

>>> import subprocess
>>> subprocess.run(["sleep", "2"], timeout=1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.9/subprocess.py", line 507, in run

stdout, stderr = process.communicate(input, timeout=timeout)
File "/usr/local/lib/python3.9/subprocess.py", line 1134, in communicate

stdout, stderr = self._communicate(input, endtime, timeout)
File "/usr/local/lib/python3.9/subprocess.py", line 2007, in _communicate

self.wait(timeout=self._remaining_time(endtime))
File "/usr/local/lib/python3.9/subprocess.py", line 1189, in wait

return self._wait(timeout=timeout)
File "/usr/local/lib/python3.9/subprocess.py", line 1911, in _wait

raise TimeoutExpired(self.args, timeout)
subprocess.TimeoutExpired: Command '['sleep', '2']' timed out after
0.9996613000002981 seconds
>>>

By passing the timeout=1 argument to subprocess.run, you are instructing subpro-
cess.run to raise a TimeoutExpired exception after approximately one second has
passed and the underlying command hasn’t completed.13 Since the sleep 2
command just waits for two seconds, it should never complete in one second
and, indeed, you see a TimeoutExpired exception raised in the preceding output.
Notably—as you may have surmised from the output—the timeout operation
is made on a best effort basis and may be above or below the timeout value
you request. In this case, for example, it was actually just under one second
before the TimeoutExpired exception was raised.

You’ve now seen how to call external programs, handle errors they might
return, and kill them if they are taking too long. Next, you’ll learn how you
can invoke programs that might need to have data sent to them over stdin.

Passing Input to External Programs with subprocess
Sometimes, it’s useful to pass input to command line programs via stdin—either
because the underlying program requires it, or you have a significant amount
of data that you don’t want to load into RAM.

13. https://docs.python.org/3/library/subprocess.html#subprocess.TimeoutExpired

• Click HERE to purchase this book now. discuss

Calling Other Programs with subprocess • 7

https://docs.python.org/3/library/subprocess.html#subprocess.TimeoutExpired
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

Use the input Argument to Pass bytes to stdin

For simple cases when you want to pass data to the stdin of a program, you
can use the input argument to subprocess.run. For example, you can search a
sequence of input bytes with grep:

>>> import subprocess
>>> to_grep = b"Alpha\nBeta\nGamma"
>>> command = ["grep", "eta"]
>>> result = subprocess.run(command, input=to_grep, capture_output=True)
>>> result.stdout
b'Beta\n'
>>>

In this example, we define an input sequence of bytes that we want to grep
through: b"Alpha\nBeta\nGamma". Next, we define our grep command as grep eta—we
are searching for lines in the input that contain eta. Using the input argument
to subprocess.run, we pass our to_grep bytes to our grep eta command as stdin. grep
responds that it found one matching line b'Beta'\n. You have successfully passed
stdin to a child program using subprocess!

Notably, when you use the input argument to subprocess.run you need all the
data you want to pass as stdin to be loaded into your application’s RAM. What
if the data you wanted to pass through stdin was large—large enough, for
example, that you wouldn’t want to store it in the RAM of your Python appli-
cation?

Use the stdin Argument to Pass Data Stored in Files to stdin

It turns out that subprocess.run also supports an argument besides input for
passing values to stdin. subprocess.run actually includes an argument named
stdin, which can accept file objects like those produced by the built-in open
command. That was a lot to unpack, but let’s try with an example where we
pass the contents of a file to grep:

subprocess_with_stdin.py
import subprocess

with open("example.txt", mode="w") as f:
contents = "example\ntext\nfile"
f.write(contents)

with open("example.txt", mode="r") as f:
result = subprocess.run(

["grep", "l"], stdin=f, capture_output=True, check=True
)

stdout_str = result.stdout.decode("utf-8").strip()
print(stdout_str)

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dmpython/code/subprocess_with_stdin.py
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

In the preceding example, the file example.txt is created and has the strings
example, text, and file written into it with each word on its own line. Then,
example.txt is opened for reading (mode="r") and its file object14 bound to f is
passed as the value for subprocess.run’s stdin argument. The command in subpro-
cess.run is ["grep", "l"], which translates roughly to, “find lines in the input that
include l in them.” The result of the subprocess.run call is bound to result, and
the captured stdout value is decoded from bytes into a string, stripped of its
trailing newline, and printed.

If you run python3 subprocess_with_stdin.py, you should see output like this:

example❮

file

grep has found all the lines in our file which had l in them, and the output
indicates this. Importantly, you were able to pass stdin to grep without loading
the entire contents of example.txt into RAM, which might be problematic if you
are working with large files. In this example, example.txt was a file of trivial size,
but you can imagine working with files much larger than example.txt.

The stdout and stderr arguments to subprocess.run15 also support being passed as
file objects. You can use file objects in place of the pipes16 and redirects17 you
may be more familiar with from traditional shells. As you just learned about
in Creating Temporary Workspaces with tempfile, on page ?, you can even
take advantage of NamedTempfile and TemporaryDirectory to use as short-lived
workspaces for your endeavors with subprocess.

In this section, you learned how to dispatch commands to the underlying
operating system. In the next section, you’ll learn how to use the sqlite3 stan-
dard library module to gain access to another powerful tool: sqlite.

14. https://docs.python.org/3/glossary.html#term-file-object
15. https://docs.python.org/3/library/subprocess.html#subprocess.run
16. https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
17. https://en.wikipedia.org/wiki/Redirection_(computing)

• Click HERE to purchase this book now. discuss

Calling Other Programs with subprocess • 9

https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
https://en.wikipedia.org/wiki/Redirection_(computing)
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

